NVIDIA

Towards Revolutionizing Chip Design with Al: The
Integration of Al and Algorithm

Haoxing (Mark) Ren, Director of Design Automation Research, NVIDIA

Al works for many chip design problems

Research Projects @ NVIDIA

VerilogCoder
(RTL)
ChipNeMo ClusteringAgent FVAgent
(Engineering) (Cell) (FV)
VerilogEval RTLFixer FVEval OPCAssistant
(RTL) (RTL) (FV) (Lithography)
VAESA Transsizer BufFormer Clustering
(Arch) (PD) (PD) (Cell)
TAG Dream-GAN ILILT
(Analog) (PD) (Lithography)
NVCell-RL PrefixRL Graph Cluster AutoCRAFT RL
(Cell) (Synthesis) (PD) (Analog)
FIST ParaSize AutoDMP
(PD) (Analog) (PD)
ParaGraph MAVIREC DOINN
(Parasitics) (IR Drop) (Lithography)
PRIMAL GRANNITE
(Power) (Switching Activity)
HPGCN PowerNet Coverage Closure
(Testability) (IR Drop) (Verification)
>
2019 2020 2021 2022 2023 2024
2 NVIDIA

Analysis, Optimization, and Assistance are the main
application scenarios

Analysis ParaGraph MAVIREC DOINN
(CNN/GNN) (Parasitics) (IR Drop) (Lithography)
Faster PRIMAL GRANNITE
Cross-Stage (Power) (Switching Activity)
Detect Anomaly HPGCN PowerNet Coverage Closure
(Testability) (IR Drop) (Verification)
>
2019 2020 2021 2022 2023 2024

3 NVIDIA

Al predicts cross-stage designh metrics

Impact of layout parasitics on schematic design
Use Al to predict layout parasitics from schematic given a large dataset
Convert schematic to graph and learn with GNN

Predicted parasitics reduced simulation error to <10%

Cap Predijction (F)
vdd 10 A
P
— 10712,
AT TQ
v v =13 -
s L e L .
N
Vss 10—14]
=P net >transistory,;, —Pp netDtransistory,, 10-15.
—===P Transistory,. ?net ———Jp Transistory., & net
Net node O Transistor node 1019 , ‘ , Ground Truth
10—15 10—13 10—11
Circuit Schematics to Heterogenous Graph Conversion MAE=0.852fF MAPE=15%

H. Ren et al, ParaGraph: Layout Parasitics and Device Parameter Prediction using Graph Neural Networks 4 A NVIDIA.

Al optimizes tools parameters

Macro placement quality is very important for physical design

Placement tools parameters have a huge impact on macro placement

Multi-objective Bayesian Optimization (sample and model) find best parameter set
Find better macro placement with open-source GPU accelerated placement tools

Search Range

Parameter
“horiz. initial position [0.2, 0.8] (%)
*vert. initial position [0.2, 0.8] (%)

*horiz. macro halo
*vert. macro halo

technology dep.
technology dep.

target density dyyrget
density weight

[auul = 0.2, awil] (%)
[1e7%, 1.0]

GD optimizer

| smooth HPWL model {LSE, WA}
smooth HPWL initial y; [0.10, 0.50]
GD mitial LR Irg [1e7%, 1e77]

GD LR decay [0.99, 1.0]

[Adam, Nesterov|

honiz. global bins
vert. global bins

{256, 512, 1024, 2048}
{256, 512, 1024, 2048}

A update lower coeff. L [0.90, 0.99]
A update upper coeff. U [1.01, 1.15]
A update A HPWLggr [15¢°, 5.5¢7)

A. Agnesina et al, AutoDMP: Automated DREAMPlace-based Macro Placement

samples ® AutoDMP
+ paretos B Baseline
e candidates 1800

% Best AutoDMP

80!
commercial EDA
tool evaluation

22
24 |
26 roU‘ed w

5 <ANVIDIA I

Al optimizes datapath structure
Datapath synthesis important for GPU

Optimize prefix adder structure with Reinforcement Learning for better delay and area tradeoff

Reward computed by open-source EDA tools

m Jig
AGENT ENVIRONMENT :a 32b Adders, OpenPhySyn, 45nm
s 050 T. Sklansky
\/ g ' '-.h «— KoggeStone
)'g ~ Brentkung
state) oy —
4 £ — ps
n: 70 —— PrefixAL
S g &
; 2000 2500 3000 500 4000 £500
rewar _.#P Area (pm?)
A(area,delay) & _ _
50: INIT PrefixRL achieves better results than well
~ Deep Qlearning ek bace known adder architectures
Circuit synthesis in-the-loop Add/Delete prefix graph nodes

R. Roy et al, PrefixRL: Optimization of parallel prefix circuits using deep reinforcement learning 6 NVIDIA

Al Generates Optimal Gate Sizes

Timing/power optimization such as gate sizing affects scalability of PD tools

Model a path of gates as a sequence, generate optimized gate sizes using Transformer
Trained on tool optimized netlist dataset

100X —1000X speedup compared to traditional optimization with similar PPA

SO S1 S2 S3 S4 S : gate size

TO T1 V) T3 T4 T : gate features
Seq Q or —] Seq D or
Primary _ Primary
Input Output

Power/Delay Tradeoff

|

condition
[TO, T1, T2, T3, T4]—> Encoder — Decoder S0,51,52,53,54

S. Nath et al, Transizer: A Novel Transformer-Based Fast Gate Size

7

NVIDIA

Al assists engineers in QnA, coding and analysis tasks

LLM is good at question answering, coding, extraction, rewriting, summarization, classification, reasoning, ...
* Answer questions about designs, infrastructures, tools, flows, HW domains, etc.

* Generate scripts for specific tasks (VLSI)
* Summarize bug reports, predict assignment
Domain-adapted model have better performance

Domain-Adaptive
Pretraining Pretraining
Foundation Models
Trillions tokens of LLaMA2 24B tokens of chip
internet data (78,138, 708B) design docs/code

10°- 108 GPU hrs Thousands GPU hrs

Model
Alignment

ChipNeMo
Chat Models
(7B, 13B, 70B)

ChipNeMo
Foundation Models
(78, 13B, 70B)

56K/128K
(SteerLM/SFT) insts
+ 1.4K task insts

100+ GPU hrs

M. Liu et al, ChipNeMo: Domain-Adapted LLMs for Chip Design

Y
o
us

T
el
ar
re

=)

e

W
r

A

rt

~—

Question: w

«f We want to isolate fabric current (power) as much as possible, so we want to enable only the logic needed for fabric test modules and the fabrics

«| If this information can be broken down per module (there are 6 in the chip), that will help.

« @User B It is not clear.

‘| In NVIDIA’s internal bug management system, a bug has been filed regarding the power and current measurements of the fabrics in the latest chip.

Prompt:
Bugld : 002

Synopsis : Request power/current measurement on fabrics using fabric test module
Module : Silicon - DFT

Description :

Hi all,

We want to evaluate silicon current (power) consumed by fabric macros in a chip. This will help us correlate this power to pre-Si power estimates.
Here are the conditions we want to look at for this data:

Fabric test module activity: 0/25/50/75/100%

Corners:

typical_low_voltage

typical_high_voltage

themselves.

Severity : 5-Performance

Priority : 5-Normal

Comments :

#1 : Author : User A

Is this a requirement only for current or for future chips as well ?

#2 : Author : User B

There will likely be interest in future chips to perform this exercise as we push the boundaries of fabric power density for better area.
#3 : Author : User A

What is needed in this bug ?

Can you list the specific needs with timelines and priority

Technical Summary:

The request is to evaluate the silicon current (power) consumed by the fabric macros in the latest chip and to correlate this power to pre-Si power
estimates. The conditions for the measurements are the fabric test module activity at 0/25/50/75/100% and the corners are typical_low_voltage and
typical_high_voltage. The data needs to be broken down per module (there are 6 in the latest chip). Only the logic needed for fabric test modules
and the fabrics themselves need to be enabled.

Managerial Summary:

User A asks User B if the need for evaluating the silicon current of fabric macros in a chip is only for that specific chip or for future ones as
well. User B replies that there will likely be interest in future chips to perform this exercise as they push the boundaries of fabric power density for
better area. User A then asks what is needed in this bug and asks for specific needs with timelines and priority.

Task Assignment:
User B

8 EAnVIDIA

Will Al revolutionize Chip Design?
Skeptics are saying :

Analysis
“Inaccurate predictions”
Optimization:
“Al is not as good as existing algorithms”
“Al will never get better results than the data it trained on”

Assistance
“Hallucinations”
“Can not help real/complex design problems”

9 NVIDIA

Al and Algorithms are good at different things

Categories Placement, route, synthesis, CTS, Supervised, unsupervised, reinforcement
etc learnings, etc
Optimality Known Unknown
Robustness Works on any data distribution Do not work if training and inference
distribution mismatch
Training No Require a lot data
Interpretability Behavior explainable Not explainable
Pros Solve a known problem efficiently Solve any problem by learning from complex
data
Cons Oversimplification of dynamic, Difficult to leverage the mechanics of the
complex problem problem

10 <ANVIDIA I

Al vs Algorithm is like System 1 vs System 2
We use both System 1 and System 2 thinkings for hard problems

System 1 4

/ System 1 System 2 \ b ey
o et |:> Heart Attack ? |:>

_f Fast >u | Slow @

o o
1 . o [@)
@'[gl _\@E{_ Chest pain oo s
\ Unconscious | g3~ Conscious © /=
Nl b 4
(nge o N

@Og Automatic @@ Effortful

Everyday __éﬁ 5 Complex

Decisions HH Decisions

© 0O
(2}3] [2H3]
\[;—_{ Error prone \ZD; ReliableJ ‘ ‘ System 2

Diagnose
Daniel Kahneman: Thinking, Fast and Slow

11 <ANVIDIA I

To revolutionize Chip Design with Al

Not a new Idea, Bayesian Optimization/Reinforcement Learning

Integrate Al with Algorithms

examples won’t work without Algorithms,

NF7

N SRK A

(X A
AT G TNN

XX .z;.:zoz:.;‘._ 0 N\
‘7";‘\"

A
ZaQ\\

BRI
R0 R
S\ A

NSHET A</
AT L
A

/

Tighter integration!

12 <ANVIDIA I

For gaming, Al + Algorithm is much better than Al only

Tight integration of Al with search algorithm helps Al game model perform much better in Poker
and Go

Noam Brown: Parables on the Power of Planning in Al: From Poker to Diplomacy

13 <ANVIDIA I

Three ways Al works with Combinatorial Optimization

algorithms

Problem
definition

Solution Problem
definition

End-to-end learning

Pmb.l(?m Decision Solution
definition
>

Coarse grain integration

OO0

Solution

Decision

Fine grain integration

000

Yoshua Bengio et al, Machine Learning for Combinatorial Optimization: a Methodological Tour d’Horizon

14 <ANVIDIA I

An inaccurate Al prediction model still works by acting as an

Oracle in an algorithm

Tackle the test point insertion problem to improve design testability

GCN model predicts node testability: Difficult-to-test nodes (DTN) prediction

Model acts as a predictor/oracle for a test point insertion (TPI) algorithm

Although model accuracy is only 90%, reduced test points by 11% and test patterns by 6% to

> < Satisfied? > END
N

achieve similar coverage as a commercial test point insertion algorithm

Layer 1 Layer 2

o o

l/)/

FC Layers

/,

%

Prediction

Netlist

Trained GCN
Model

Prediction

[

L

Impact Evaluation

¥

Y. Ma et al, High Performance Graph Convolutional Networks with Applications in Testability Analysis

OP Insertion

15

NVIDIA

Ground the Al with an algorithm helps Al get better results than the
algorithm that generates the training data

Mask optimization is a timing consuming process for every design

Learn the optimized mask from ILT (inverse lithography Technology) solver
Use Lithography forward simulation algorithm to ground the model
Increase inference time compute with multi-step inference

Better quality than ILT (generated the training data) with 10X speedup

Design Design Design
‘
ML
' ILILT
LT Initial Mask ML <
' ! , (d) ILILT-Mask (e) ILILT-Wafer
*.. Litho "S- Litho
LT “‘ (a) Design
Litho
Mask Mask Mask
(a) ILT (b) ML-Aided (c) ILILT
H. Yang et al, ILILT: Implicit Learning of Inverse Lithography Technologies (b) ILT-Mask (¢) ILT-Wafer

16 LIVIDIA

Al as part of a meta algorithm to solve challenges difficult for
algorithms to solve

Layouts of thousands cells per library designed manually, difficult to automate
Layout/Routing challenges: satisfying all the DRC rules
Use an algorithm to route, but RL to fix DRC

Generate std cell layout of entire industrial libraries with better quality tll,ﬁ ?

Unrouted nets
) al
i II T
by
Maze Routed Fix DRC with >
Routing design RL DRC free route

#Unfixed DRCs

Genetic
Algorithm

H. Ren et al, Standard Cell Routing with Reinforcement Learning and Genetic Algorithm in

Advanced Technology Nodes 17 <INVIDIA I

RAGs are algorithms to ground LLM with facts to reduce

hallucination

VectorDB supparting similarity search

Embedding

LLMs tend to hallucination ‘
o) “Tell me about
Incorrect, outdated, conflicting, scarcity of the >

SM
training data 1 ‘

Retrieval Augmented Generation (RAG) helps to
ground LLM with curated documents

RAG leverages the search algorithm (embedding
similarity “Hash”) to retrieve the relevant chunks ‘
as context for the question

Embedding
Advanced RAGs use even more complicated Vector
algorithms

: A GPU contains two or more Streaming
Multiprocessors (SM) depending upon

RAG lllustration

18 <ANVIDIA I

Agentic systems are algorithms to decompose complex tasks

Agent handles complex tasks by problem decomposition

and use tools

Planning, memory and tools form algorithms

These algorithms use LLM to compute at each step

Complex
Question

Planning

Tools

> Answer

19 <ANVIDIA I

Planning/Reasoning methods are algorithms

Problem Problem
Propose
Stepl [Step][Step]
.) 1-1 1-2
| {} Evaluate
Step 2 [Choose]
\ J 1‘2
Propose
} Step][Step]
[Step 3] [2-1 2-2
J{} Evaluate
[Choose]
2-1

Chain-of-Thought Tree-of-Thought
(Procedure) (Branch)

Thoughts

ReACT
(Loop)

Long term Short term
experience Trajectories

l Self- I [Evaluator]
Refl X tion

Self-Reflection

(Multi-Level Loop)
20 <ANVIDIA I

Multi-agent communication patterns are algorithms

Multiple agents can talk to each other form an agentic system
Planning for multi-agent is the design of communication patterns

Communication patterns between agents are algorithms: static and dynamic patterns

Agent Conversation Task Flow
(dynamic) (static)

21 <INVIDIA I

Report Agent: compare and summarize timing reports with
CoT and ReACT

Reading many timing reports are tedious work.

Chain-of-Thought

Tools Let’s think step by step.
timing_metric_calculation_tool : Firstly, analyze the change of WNS, and TNS for all designs in all PVT
Calculate changes in WNS, TNS, or FEP corners tables of these two "datecode" settings and explain with

numbers using tools.

slack_distributi on_(?alculatl on_t(.)ol:. , Secondly, comparing "FEP" of two datecode settings in all PVT
Calculate changes in the slack distribution corners tables.

Thirdly, analyze the slack distribution to identify the distribution of
Action Observation "slack less than 0" paths.

Finally, summarize the analysis in the following aspects:

1. Provide key takeaways, comparison, and suggestions with bullet
points of the two "datecode" settings based on previous steps.

Reasoning: 2. Identify the corner which still suffers many timing violations if any.

Thoughts You need to use the provided tools to analyze the timing metrics!
You are not good at math!

ReACT 22 NVIDIA

RTLFixer: fix RTL syntax errors generated by LLM with RAG

55% of GPT-3.5 Verilog generation errors are
Syntax errors

Agent can fix 99% of Syntax Errors

Get feedback/error messages from Verilog

Guidance

Tools

Compiler
provide syntax error message

RAG

compiler Database

Retrieve human guidance for each syntax
error with RAG

Compiler Logs:

Object ‘clk’ is not declared. Verify the object name is correct. If the name
is correct, declare the object.

Human Expert Guidance:

Check if ‘clk’ is an input. If not, and if ‘clk’ is used within the module,
make sure the name is correct. If it's meant to trigger an ‘always’ block,
replace ‘posedge clk’ with “*".

Y.-D. Liu et al, RTLFixer: Automatically Fixing RTL Syntax Errors with Large Language Models

n
»

retrieve human guidance

Action Observation

o
Reasoning
-/ \yghts

ReACT

23

NVIDIA

FVAgent : Generate SVA from natural language (NL) input
with self-learned rules and multi-agents

SVA generation is even harder because of less data available
Articulated ‘rules’ in the context improves the accuracy
Self-Learning: Generate rule knowledge base from training data

Multi-Agent task flow : rule generation/retrieval/fix syntax

FVAgent improves Syntax/Function corrections on all models Tools
Generated Jasper
NL-SVA ,) NL-SVA
Good/Bad pairs
Examples Action Observation
Learning Rules Retrieving

E.g. “prioritize using the exact signal
names and operators mentioned in
the natural language query ...” Learned

Rules

Experiences

)

v

v

Reasoning
Thoughts

J. Wan et al, FVAgent: Bridging Natural Language Specifications and Formal Verification Correcti ng Syntax NVIDIA
Assertions with Adaptive Multi-Agent Learning 24)

VerilogCoder Agent significantly outperforms baseline LLMs
in Verilog benchmark: VerilogEval

Model
Capability
Non-agentic Agentic
60.3% 94.2%
(VerilogCoder)
O ol I T 0 Y0 T L R S
Non-agentic Agentic
41.7% 67.3%
(VerilogCoder)
LLama3 ... ’ ... ’ ...
Pass@1 (%)
VerilogEval
0 20 40 60 80 100

C.-T. Ho et al, VerilogCoder: Autonomous Verilog Coding Agents with Graph-based Planning
and Abstract Syntax Tree (AST)-based Waveform Tracing Tool 25 NVIDIA

Task planning and Code Implementation are major stages of

VerilogCoder

The task planning stage generates a task plan

The code implementation stage writes code for
each planned task

Leverage special knowledge base and tools
Task Planning

Task-Driven Circuit Relation Graph (TCRG)
Code Implementation
AST-guided waveform debugging tool

Dynamic task plan and knowledge base

C.-T. Ho et al, VerilogCoder: Autonomous Verilog Coding Agents with Graph-based
Planning and Abstract Syntax Tree (AST)-based Waveform Tracing Tool

Module in Natural Language
Problem Description

VerilogCoder .v

Task Planning: TCRG based Task Planner

High-level Circuit Signal, Transition,
Planne: Agent Example Ext‘r;action Agent

Task and Circuit Relation Graph Construction

¥

Task-Driven Circuit Relation Graph Retrieval Agent

Verilog Code Implementation

Code Agent

(Code Agent)

Task N: Check and correct the functionality

Task1: Define the module input, and output.

Task2: Implement the next state logic for state SO.

(Debfgent)

Verilog Code of Module

26

VIDIA I

Multi-agent planner builds Knowledge Graph to extract
detailed information for task planning

C.Ircu.lt S]gnal’ TI‘EII‘IS]UDH, ngh_level Planner Agent Task: Define the Module Interface
Example Extraction Agent :
Plans Task: Implement the combinational logic for
° o °9 : . N the S_next signal.
Consistent?

Extract circuit signal, signal Iteratively verification until

transitions, and example in the the plan is consistent with
module description the module description

Task-Driven Circuit Relation
Graph Retrieval Agent

$

Task: Implement the combinational logic for

the 51_next.
Retrieve k-hop — 7 details
° of a subtask ~ //
o 0O / >
- —
Retrieved info TCRG Retrieval ‘
(ReAct) Tool Task: Check and correct the functionality

27 NVIDIA

Multi-agent coder leverages syntax checker and waveform

tracing tools to write and debug code
Code Agent: Write partial Verilog code

Writing code for each task

Debug final code

<" Verilog Code
—

_
Consistent?
Syntax Error?

action Syntax
<+—— | checker Tool

Obs. (iverilog)
(ReAct)

Debug Agent: Check and Correct the functionality

Verilog Verification Tools

AST-based Waveform
Tracing Tool

Pl |-

Testbench
of Module

Simulator Tool
(iverilog)

Obs.
(ReAct)

action Qp {\
— o L Reasoning:

28

NVIDIA

(/home/scratch.chiatungh nvresearch/nvcell env/llm env) bash-4.2% python hardware agent/examples/verilog eval agent/Verilog eval task flow verl.py

reading /home/scratch.chiatungh nvresearch/hardware-agent-marco/hardware agent/examples/verilog testcases/verilog-eval-v2/dataset dumpall/ Probl139 2013 q2bfsm prompt.txt
reading /home/scratch.chiatungh nvresearch/hardware-agent-marco/hardware agent/examples/verilog testcases/verilog-eval-v2/dataset _dumpall/ Probl39 2013 q2bfsm_ref.sv
reading /home/scratch.chiatungh nvresearch/hardware-agent-marco/hardware agentlemleslverl‘lug testcases/verilog-eval-v2/dataset dumpall/ Probl39 2013 q2bfsm test.sv
{'\lm class': <class 'adlrchat.langchain.LLMGatewayChat'>, 'llm kwargs': {'model name': 'gpt-4', 'temperature': 0.0, 'top p': 1.8}}

case manager length = 1

current test is 2013 g2bfsm

current task id is 2013 q2bfsm

current test is 2013 q2bfsm

register tool sequential _flipflop latch identify tool <function sequential flipflop latch identify tool at ex7f65abdace4e> caller: <autogen.agentchat.assistant agent.AssistantAgent object at ex7f65a93adlbe> executer: <autogen.agentc
hat.user proxy agent.UserProxyAgent object at @x7f65a93ad39e>

Hardware Agent Initialized 1 proxy, © rag proxy, 2 assistants

Hardware Agent Initialized 1 proxy, @ rag proxy, 1 assistants

user (to chat_manager):

You are a Verilog RTL designer that can break down complicated implementation into subtasks implementation plans.

[Example Begin)
##4 Problem

I would like {ou to implement a module named TopModule with the following
interface. All input and output ports are one bit unless otherwise
specified.

- input clk

- input reset

- input in (8 bits) 1
- output out (8 bits)

The module should implement an 8-bit registered incrementer. The 8-bit
input is first registered and then incremented by one on the next cycle.

Assume all sequential logic is triggered on the positive edge of the
clock. The reset input is active high synchronous and should reset the
output to zero.

Solution
module TopModule
(
input logic clk,
input logic reset,
input logic [7:@] in, |

output logic [7:0] out
|H
// Sequential logic
logic [7:0] reg out;
always @(posedge clk) begin
if (reset)
reg out <= 0;

else
reg out <= in;

// Combinational logic

logic [7:0] temp wire;

always @(*) begin
~ temp wire = reg_out + 1;

Al learns to generate a problem-specific algorithm

Static algorithms (predefined CoT, taskflow) work but not flexible
Dynamic algorithms (‘think step by step’, VerilogCoder task plan) are more desirable
O1 improves this capability by learning — learning to reason

Future: Make LLM learn to reason in Chip Design problem

bash

Write a bash script that takes a matrix
represented as a string with format '[1,2],

#!/bin/bash

“01 learns to hone its chain of thought
and refine the strategies it uses. It
learns to recognize and correct its
mistakes. It learns to break down tricky

INPUT=

[3,4],[5,6] and prints the transpose in the
same format.

Formulating the problem nopfile -t Lines <« steps into simpler ones. It learns to try
Crafting the script a different approach when the current
Reading input and parsing cols=$(echo one isn’t working. “
Breaking down the matrix declare -a matrix
Determining matrix dimensions . .

. . ((i=0; i<nrows; i+1)); OpenAl, Learning to Reason with LLMs
Mapplng out the matrix IFS= read -ra elements <<<

. ((j=8; j< 5 305
Constructlng the output index=$((i * cols + j))

matrix[1= 30 nVIDIA

Conclusions

Al alone can not revolutionize how we design chip today

We should deeply integrate Al with algorithms to leverage the advantages and
avoid the pitfalls of either one

Explore the vast potential of integrating Al with algorithms for EDA problems:
design analysis and optimization.

Exploit the revolutionary advancement of the Agentic system (an algorithm using
LLM as a computing node) for design assistance

Train Al to learn to generate its own algorithms for chip design problem:s.

31 NVIDIA

<X NVIDIA

	Slide 1
	Slide 2: AI works for many chip design problems
	Slide 3: Analysis, Optimization, and Assistance are the main application scenarios
	Slide 4: AI predicts cross-stage design metrics
	Slide 5: AI optimizes tools parameters
	Slide 6: AI optimizes datapath structure
	Slide 7: AI Generates Optimal Gate Sizes
	Slide 8: AI assists engineers in QnA, coding and analysis tasks
	Slide 9: Will AI revolutionize Chip Design? Skeptics are saying :
	Slide 10: AI and Algorithms are good at different things
	Slide 11
	Slide 12: To revolutionize Chip Design with AI Integrate Al with Algorithms
	Slide 13
	Slide 14: Three ways AI works with Combinatorial Optimization algorithms
	Slide 15
	Slide 16: Ground the AI with an algorithm helps AI get better results than the algorithm that generates the training data
	Slide 17: AI as part of a meta algorithm to solve challenges difficult for algorithms to solve
	Slide 18: RAGs are algorithms to ground LLM with facts to reduce hallucination
	Slide 19: Agentic systems are algorithms to decompose complex tasks and use tools
	Slide 20: Planning/Reasoning methods are algorithms
	Slide 21: Multi-agent communication patterns are algorithms
	Slide 22: Report Agent: compare and summarize timing reports with CoT and ReACT
	Slide 23: RTLFixer: fix RTL syntax errors generated by LLM with RAG
	Slide 24: FVAgent : Generate SVA from natural language (NL) input with self-learned rules and multi-agents
	Slide 25: VerilogCoder Agent significantly outperforms baseline LLMs in Verilog benchmark: VerilogEval
	Slide 26: Task planning and Code Implementation are major stages of VerilogCoder
	Slide 27: Multi-agent planner builds Knowledge Graph to extract detailed information for task planning
	Slide 28: Multi-agent coder leverages syntax checker and waveform tracing tools to write and debug code
	Slide 29
	Slide 30: AI learns to generate a problem-specific algorithm
	Slide 31: Conclusions
	Slide 32

