
Towards Revolutionizing Chip Design with AI: The
Integration of AI and Algorithm
Haoxing (Mark) Ren, Director of Design Automation Research, NVIDIA

AI works for many chip design problems

2024

HPGCN
(Testability)

2019 2020 2021 2022 2023

PRIMAL
(Power)

FIST
(PD)

PowerNet
(IR Drop)

ParaGraph
(Parasitics)

GRANNITE
(Switching Activity)

NVCell-RL
(Cell)

MAVIREC
(IR Drop)

ParaSize
(Analog)

DOINN
(Lithography)

Transsizer
(PD)

TAG
(Analog)

BufFormer
(PD)

ILILT
(Lithography)

ChipNeMo
(Engineering)

AutoCRAFT RL
(Analog)

Dream-GAN
(PD)

AutoDMP
(PD)

VerilogEval
(RTL)

RTLFixer
(RTL)

Clustering
(Cell)

ClusteringAgent
(Cell)

VerilogCoder
(RTL)

Graph Cluster
(PD)

FVAgent
(FV)

FVEval
(FV)

OPCAssistant
(Lithography)

PrefixRL
(Synthesis)

VAESA
(Arch)

Coverage Closure
(Verification)

2

Research Projects @ NVIDIA

Analysis, Optimization, and Assistance are the main
application scenarios

2024

HPGCN
(Testability)

2019 2020 2021 2022 2023

PRIMAL
(Power)

FIST
(PD)

PowerNet
(IR Drop)

ParaGraph
(Parasitics)

GRANNITE
(Switching Activity)

NVCell-RL
(Cell)

MAVIREC
(IR Drop)

ParaSize
(Analog)

DOINN
(Lithography)

Transsizer
(PD)

TAG
(Analog)

BufFormer
(PD)

ILILT
(Lithography)

ChipNeMo
(Engineering)

AutoCRAFT RL
(Analog)

Dream-GAN
(PD)

AutoDMP
(PD)

VerilogEval
(RTL)

RTLFixer
(RTL)

Clustering
(Cell)

ClusteringAgent
(Cell)

VerilogCoder
(RTL)

Analysis
(CNN/GNN)

Faster
Cross-Stage

Detect Anomaly

Optimization
(BO/RL/GenAI)

Faster
More scalable
Better results

Assistance
(LLM/Agent)

Know-how
Coding

Task automation

Graph Cluster
(PD)

FVAgent
(FV)

FVEval
(FV)

OPCAssistant
(Lithography)

PrefixRL
(Synthesis)

VAESA
(Arch)

Coverage Closure
(Verification)

3

AI predicts cross-stage design metrics

Impact of layout parasitics on schematic design

Use AI to predict layout parasitics from schematic given a large dataset

Convert schematic to graph and learn with GNN

Predicted parasitics reduced simulation error to <10%

H. Ren et al, ParaGraph: Layout Parasitics and Device Parameter Prediction using Graph Neural Networks

MAE=0.852fF MAPE=15%

Cap Prediction (F)

Ground Truth

Circuit Schematics to Heterogenous Graph Conversion

4

AI optimizes tools parameters

Macro placement quality is very important for physical design

Placement tools parameters have a huge impact on macro placement

Multi-objective Bayesian Optimization (sample and model) find best parameter set

Find better macro placement with open-source GPU accelerated placement tools

A. Agnesina et al, AutoDMP: Automated DREAMPlace-based Macro Placement

AutoDMP
Baseline
Best AutoDMP

5

Action Space
Add/Delete prefix graph nodes

Deep Q learning
Circuit synthesis in-the-loop

AGENT ENVIRONMENT

state

action

S0

S1

∆(area,delay)
reward

synthesized circuits

AI optimizes datapath structure
Datapath synthesis important for GPU

Optimize prefix adder structure with Reinforcement Learning for better delay and area tradeoff

Reward computed by open-source EDA tools

R. Roy et al, PrefixRL: Optimization of parallel prefix circuits using deep reinforcement learning 6

PrefixRL achieves better results than well
known adder architectures

AI Generates Optimal Gate Sizes

Timing/power optimization such as gate sizing affects scalability of PD tools

Model a path of gates as a sequence, generate optimized gate sizes using Transformer

Trained on tool optimized netlist dataset

100X – 1000X speedup compared to traditional optimization with similar PPA

Seq Q or
Primary
Input

Seq D or
Primary
Output

T0 T1 T2

S0 S1 S2 S : gate size

T : gate features

S. Nath et al, Transizer: A Novel Transformer-Based Fast Gate Size

Encoder DecoderT0, T1, T2, T3, T4 𝑆0, 𝑆1, 𝑆2, 𝑆3, 𝑆4

T3 T4

S3 S4

Power/Delay Tradeoff

condition

7

AI assists engineers in QnA, coding and analysis tasks

LLM is good at question answering, coding, extraction, rewriting, summarization, classification, reasoning, …

• Answer questions about designs, infrastructures, tools, flows, HW domains, etc.

• Generate scripts for specific tasks (VLSI)

• Summarize bug reports, predict assignment

Domain-adapted model have better performance

8M. Liu et al, ChipNeMo: Domain-Adapted LLMs for Chip Design

Analysis
“Inaccurate predictions”

Optimization:
“AI is not as good as existing algorithms”

“AI will never get better results than the data it trained on”

Assistance
“Hallucinations”

“Can not help real/complex design problems”

9

Will AI revolutionize Chip Design?
Skeptics are saying :

AI and Algorithms are good at different things

Algorithm AI

Categories Placement, route, synthesis, CTS,
etc

Supervised, unsupervised, reinforcement
learnings, etc

Optimality Known Unknown

Robustness Works on any data distribution Do not work if training and inference
distribution mismatch

Training No Require a lot data

Interpretability Behavior explainable Not explainable

Pros Solve a known problem efficiently Solve any problem by learning from complex
data

Cons Oversimplification of dynamic,
complex problem

Difficult to leverage the mechanics of the
problem

10

Daniel Kahneman: Thinking, Fast and Slow

11

AI vs Algorithm is like System 1 vs System 2
We use both System 1 and System 2 thinkings for hard problems

Chest pain

System 1

Heart Attack ?

Diagnose

System 2

To revolutionize Chip Design with AI
Integrate Al with Algorithms

12

Not a new Idea, Bayesian Optimization/Reinforcement Learning
examples won’t work without Algorithms,

Tighter integration!

Tight integration of AI with search algorithm helps AI game model perform much better in Poker
and Go

Noam Brown: Parables on the Power of Planning in AI: From Poker to Diplomacy

13

For gaming, AI + Algorithm is much better than AI only

Three ways AI works with Combinatorial Optimization
algorithms

Yoshua Bengio et al, Machine Learning for Combinatorial Optimization: a Methodological Tour d’Horizon

End-to-end learning

Coarse grain integration Fine grain integration

14

Tackle the test point insertion problem to improve design testability

GCN model predicts node testability: Difficult-to-test nodes (DTN) prediction

Model acts as a predictor/oracle for a test point insertion (TPI) algorithm

Although model accuracy is only 90%, reduced test points by 11% and test patterns by 6% to
achieve similar coverage as a commercial test point insertion algorithm

Y. Ma et al, High Performance Graph Convolutional Networks with Applications in Testability Analysis

15

An inaccurate AI prediction model still works by acting as an
Oracle in an algorithm

Ground the AI with an algorithm helps AI get better results than the
algorithm that generates the training data

Mask optimization is a timing consuming process for every design

Learn the optimized mask from ILT (inverse lithography Technology) solver

Use Lithography forward simulation algorithm to ground the model

Increase inference time compute with multi-step inference

Better quality than ILT (generated the training data) with 10X speedup

H. Yang et al, ILILT: Implicit Learning of Inverse Lithography Technologies
16

AI as part of a meta algorithm to solve challenges difficult for
algorithms to solve

Layouts of thousands cells per library designed manually, difficult to automate

Layout/Routing challenges: satisfying all the DRC rules

Use an algorithm to route, but RL to fix DRC

Generate std cell layout of entire industrial libraries with better quality than designer

Maze
Routing

Fix DRC with
RL

Genetic
Algorithm

Routed
 design DRC free route

#Unfixed DRCs

Unrouted nets

H. Ren et al, Standard Cell Routing with Reinforcement Learning and Genetic Algorithm in
Advanced Technology Nodes 17

RAGs are algorithms to ground LLM with facts to reduce
hallucination

LLMs tend to hallucination

Incorrect, outdated, conflicting, scarcity of the
training data

Retrieval Augmented Generation (RAG) helps to
ground LLM with curated documents

RAG leverages the search algorithm (embedding
similarity “Hash”) to retrieve the relevant chunks
as context for the question

Advanced RAGs use even more complicated
algorithms

18
18

LLM
“Tell me about

SM”
Response

Retrieval Model

Embedding
Vector

Embedding Chunk

xxxx A GPU contains two or more Streaming
Multiprocessors (SM) depending upon
…

VectorDB supporting similarity search

3

4

4 5

RAG Illustration

1

2

Agentic systems are algorithms to decompose complex tasks
and use tools

Agent handles complex tasks by problem decomposition

Planning, memory and tools form algorithms

These algorithms use LLM to compute at each step

Complex
Question

Planning

Answer

Tools

Memory

LLM

19

Planning/Reasoning methods are algorithms

Problem

Step
1-1

Step
1-2

Step
2-1

Step
2-2

Evaluate
Choose

1-2

Evaluate
Choose

2-1

Propose

Propose

Tree-of-Thought
(Branch)

ReACT
(Loop)

Thoughts

Action

Obs.

Problem

Env

20

Problem

Step1

Step 2

Step 3

Chain-of-Thought
(Procedure)

ReACT
Agent

Short term
Trajectories

Evaluator

Problem

Self-
Reflection

Long term
experience

Self-Reflection
(Multi-Level Loop)

Multi-agent communication patterns are algorithms

Multiple agents can talk to each other form an agentic system

Planning for multi-agent is the design of communication patterns

Communication patterns between agents are algorithms: static and dynamic patterns

Agent Conversation
(dynamic)

21

Task Flow
(static)

Report Agent: compare and summarize timing reports with
CoT and ReACT

Chain-of-Thought
Let’s think step by step.
Firstly, analyze the change of WNS, and TNS for all designs in all PVT
corners tables of these two "datecode" settings and explain with
numbers using tools.
Secondly, comparing "FEP" of two datecode settings in all PVT
corners tables.
Thirdly, analyze the slack distribution to identify the distribution of
"slack less than 0" paths.
Finally, summarize the analysis in the following aspects:

1. Provide key takeaways, comparison, and suggestions with bullet
points of the two "datecode" settings based on previous steps.

2. Identify the corner which still suffers many timing violations if any.

You need to use the provided tools to analyze the timing metrics!
You are not good at math!

22

timing_metric_calculation_tool :
Calculate changes in WNS, TNS, or FEP
slack_distribution_calculation_tool:
Calculate changes in the slack distribution

Action Observation

ReACT

Reasoning:
Thoughts

Tools

Reading many timing reports are tedious work.

RTLFixer: fix RTL syntax errors generated by LLM with RAG

55% of GPT-3.5 Verilog generation errors are
Syntax errors

Agent can fix 99% of Syntax Errors

Get feedback/error messages from Verilog
compiler

Retrieve human guidance for each syntax
error with RAG

Y.-D. Liu et al, RTLFixer: Automatically Fixing RTL Syntax Errors with Large Language Models
23

23

Guidance
Database

Reasoning
Thoughts

Compiler
provide syntax error message

RAG
retrieve human guidance

Tools

Action Observation

ReACT

FVAgent : Generate SVA from natural language (NL) input
with self-learned rules and multi-agents

SVA generation is even harder because of less data available

Articulated ‘rules’ in the context improves the accuracy

Self-Learning: Generate rule knowledge base from training data

Multi-Agent task flow : rule generation/retrieval/fix syntax

FVAgent improves Syntax/Function corrections on all models

Reasoning
Thoughts

Learned
Rules

NL-SVA
pairs

Correcting Syntax

Retrieving
Experiences

Learning Rules

Generated
NL-SVA
Good/Bad
Examples

J. Wan et al, FVAgent: Bridging Natural Language Specifications and Formal Verification
Assertions with Adaptive Multi-Agent Learning 24

Jasper

Tools

Action Observation

E.g. “prioritize using the exact signal
names and operators mentioned in
the natural language query …”

VerilogCoder Agent significantly outperforms baseline LLMs
in Verilog benchmark: VerilogEval

C.-T. Ho et al, VerilogCoder: Autonomous Verilog Coding Agents with Graph-based Planning
and Abstract Syntax Tree (AST)-based Waveform Tracing Tool 25

0 20 40 60 80 100

LLama3

GPT4turbo

Non-agentic
41.7%

Agentic
67.3%

(VerilogCoder)

Non-agentic
60.3%

Agentic
94.2%

(VerilogCoder)

Pass@1 (%)
VerilogEval

Model
Capability

Task planning and Code Implementation are major stages of
VerilogCoder

The task planning stage generates a task plan

The code implementation stage writes code for
each planned task

Leverage special knowledge base and tools
Task Planning

Task-Driven Circuit Relation Graph (TCRG)

Code Implementation
AST-guided waveform debugging tool

Dynamic task plan and knowledge base

C.-T. Ho et al, VerilogCoder: Autonomous Verilog Coding Agents with Graph-based
Planning and Abstract Syntax Tree (AST)-based Waveform Tracing Tool 26

Multi-agent planner builds Knowledge Graph to extract
detailed information for task planning

27

details

Multi-agent coder leverages syntax checker and waveform
tracing tools to write and debug code

28

Writing code for each task

Debug final code

AI learns to generate a problem-specific algorithm

OpenAI, Learning to Reason with LLMs

“o1 learns to hone its chain of thought
and refine the strategies it uses. It
learns to recognize and correct its
mistakes. It learns to break down tricky
steps into simpler ones. It learns to try
a different approach when the current
one isn’t working. “

30

Static algorithms (predefined CoT, taskflow) work but not flexible

Dynamic algorithms (‘think step by step’, VerilogCoder task plan) are more desirable

O1 improves this capability by learning – learning to reason

Future: Make LLM learn to reason in Chip Design problem

Conclusions

AI alone can not revolutionize how we design chip today

We should deeply integrate AI with algorithms to leverage the advantages and
avoid the pitfalls of either one

Explore the vast potential of integrating AI with algorithms for EDA problems:
design analysis and optimization.

Exploit the revolutionary advancement of the Agentic system (an algorithm using
LLM as a computing node) for design assistance

Train AI to learn to generate its own algorithms for chip design problems.

31

	Slide 1
	Slide 2: AI works for many chip design problems
	Slide 3: Analysis, Optimization, and Assistance are the main application scenarios
	Slide 4: AI predicts cross-stage design metrics
	Slide 5: AI optimizes tools parameters
	Slide 6: AI optimizes datapath structure
	Slide 7: AI Generates Optimal Gate Sizes
	Slide 8: AI assists engineers in QnA, coding and analysis tasks
	Slide 9: Will AI revolutionize Chip Design? Skeptics are saying :
	Slide 10: AI and Algorithms are good at different things
	Slide 11
	Slide 12: To revolutionize Chip Design with AI Integrate Al with Algorithms
	Slide 13
	Slide 14: Three ways AI works with Combinatorial Optimization algorithms
	Slide 15
	Slide 16: Ground the AI with an algorithm helps AI get better results than the algorithm that generates the training data
	Slide 17: AI as part of a meta algorithm to solve challenges difficult for algorithms to solve
	Slide 18: RAGs are algorithms to ground LLM with facts to reduce hallucination
	Slide 19: Agentic systems are algorithms to decompose complex tasks and use tools
	Slide 20: Planning/Reasoning methods are algorithms
	Slide 21: Multi-agent communication patterns are algorithms
	Slide 22: Report Agent: compare and summarize timing reports with CoT and ReACT
	Slide 23: RTLFixer: fix RTL syntax errors generated by LLM with RAG
	Slide 24: FVAgent : Generate SVA from natural language (NL) input with self-learned rules and multi-agents
	Slide 25: VerilogCoder Agent significantly outperforms baseline LLMs in Verilog benchmark: VerilogEval
	Slide 26: Task planning and Code Implementation are major stages of VerilogCoder
	Slide 27: Multi-agent planner builds Knowledge Graph to extract detailed information for task planning
	Slide 28: Multi-agent coder leverages syntax checker and waveform tracing tools to write and debug code
	Slide 29
	Slide 30: AI learns to generate a problem-specific algorithm
	Slide 31: Conclusions
	Slide 32

