

INFRASTRUCTURE

## Silent Data Corruptions at Scale EDPS 2023

Harish Dixit Principal Engineer Meta Infrastructure Menlo Park. CA. USA



### Family MAP : 3.81B



🔿 Meta

\*MAP - Monthly Active People

Source: Meta Platforms Inc. Q1 2023







## Silent Data Corruptions

# $(1.1)^{53} = 0$

 $(1.1)^{53} = 0$ 

### Silent Errors in Compute Units



Defects in silicon



Hard to detect

Undetected for months/years



Significant impact to services



In the case of silent errors, none of these are available

#### But wait ....

#### Cosmic Rays ?

Pentium FDIV ?

Isn't this a solved problem ?



#### **Cosmic Ray induced faults**

1 fault in a million devices



### Silent Data Corruptions

#### 1 fault in a thousand devices



POSTED ON FEBRUARY 23, 2021 TO DATA INFRASTRUCTURE

Mitigating the effects of silent data corruption at scale

Blog - <u>https://engineering.fb.com/2021/02/23/data-infrastructure/silent-data-corruption/</u> Paper - <u>https://arxiv.org/abs/2102.11245</u>

#### A needle in haystack situation

..... where the needle keeps moving, changing size and shape

.... and the haystack gets larger every day

# How did we find these elusive SDCs?



## CPU Silent Data Corruption (Case Study in SPARK DB)



An example of a single faulty CPU encountering silent data corruptions *Result:* Missing rows in a Spark Database Application (Highest Infra Severity Event)

### Isolating the faulty instruction down to 60 lines assembly!



#### 3.8B MAP translates to billions of computations and interactions every day



#### Failures can lead to contained and uncontained fan-outs

\*illustrative only large-scale system diagram (not an architecturally directional flow representation)

#### Systems at Scale



At a server level, services translate to numerous machines executing transactions with large fanout

\*All machines assumed to be of the same size for illustration

#### Systems at Scale



Significant impact to services

\*All machines assumed to be of the same size for illustration

## **Detecting silent data corruptions**

Why is this a hard problem ?



Electrical Variations (V, I, f) Eg:  $3 \times 5 = 15$ , but repeated 3 x 5!= 15 across device characteristics

(changing T, regional factors etc) Eg:  $3 \times 5 = 15$ , but repeated  $3 \times 5 = 15$  in all regions



**Lifecycle Variations** Eg: 3 x 5 = 15 today but tomorrow  $3 \times 5 = 13$  From 1 SDC to 100s – How did we scale our approach?



## Test continuously in the fleet

- Fleetscanner (Out-of-production testing)
- Ripple (In-production testing)

In addition to – testing at the manufacturer and at datacenter intake.

## Test continuously in the fleet (Fleetscanner)



## Fleet Scanner

Taking pitstops to run tests!

- Non-Production States
- Run directed tests
- Test time: Order of minutes
- Time to fleet coverage: 6 months
- 100s of devices detected with silent errors

**4**B

fleet seconds (lifetime) FLEET TESTING TIME

BUT THIS IS TOO SLOW ACROSS A LIVE FLEET.....



## Test continuously in the fleet (Ripple)





Testing along with workloads

- Workload colocation
- In-production tiny tests
- Test time: Order of milliseconds
- Time to fleet coverage: 15 days

# 100M

fleet seconds per month

FLEET TESTING TIME

#### **BOTH METHODS OF TESTING PROVIDE UNIQUE COVERAGE!**



Detecting silent errors in the wild: Combining two novel approaches to quickly detect silent data corruptions at scale

## **Key Results**

3 years of infrastructure testing using both mechanisms (for a large defect family)

| Metric                                | Fleetscanner        | Ripple               |
|---------------------------------------|---------------------|----------------------|
| Test<br>Iterations                    | ~68M<br>(lifetime)  | ~2.5M<br>(per month) |
| Performance<br>aware                  | No                  | Yes                  |
| Time to<br>equivalent<br>SDC coverage | ~ 6 months<br>(70%) | ~ 15 days<br>(70%)   |

**Detectable silent data corruptions** 



## Interesting observations:

 $Int[(1.1)^{3}] = 0, expected = 1.$  $Int[(1.1)^{107}] = 32809, expected = 26854.$  $Int[(1.1)^{-3}] = 1, expected = 0.$ 

- Compiler and optimization dependent.
- Impacting computations involving non-zero operands, results, with varying degrees of precision.
- Impacts wide variety of applications.
- Impacts multiple instruction types and functional subblocks
- Vectors, Floating computations, large data moves, gather-scatter ops, encryption,
  shared memory coherency, string corruptions etc.
- Instances of impact in coldstorage (backups), presto (queries) and kernel code etc.

#### 1 defect per thousand devices ?

# What % is the unknown unknown ?

## What's next ? – Dealing with SDCs



With increased silicon density and technology scaling, we are more likely to see silent data corruptions in future CPUs and ASICs.

Silent errors are a foundational computing problem!

Thank You!!

