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Why (contd): Pendulum of Control is Shifting

Local User Control O O Central Admin Control
2. Personal computers 1. Main-frames
6. Smart Phone devices 4. Enterprise Data Processing

O

Shared Computing Control
3. Client-Server Computers
5. Public Clouds

7. Hybrid Cloud Servers
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Source ~ Strategy Analytics research services, May 2019: 10T Strategies, Connected Home Devices, Connected Computing
Devices, Wireless Smartphone Strategies, Wearable Device Ecosystem, Smart Home Strategies
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What (contd): Security in Public Clouds

SaaS Security
boundary

Software as a Service
(e.g., Salesforce, Netflix)

Platform as a Service

PaaS Security boundary (Google GCP)
oogle

Platform Middleware and Integration
with its services

laas Security Platform hardware, BIOS, firmware, OS, drivers Infrastructure as a Service
(e.g., Amazon AWS)

boundary and APIs to their services.




Centralized machine learning architecture Decentralized machine learning architecture

Central Cloud Location Central Controller

Central DB

Al Algorithms Fusion of shared Al Algorithms

Final Aggregation Roll-up resources

Large data Large computing Results to achieve global Al model
sources resources

A

Data travels to a central location

J0 0

1st Party Znd Party N-1 Party Nth Party

Federated Learning is simply the decentralized form of Machine Learning*
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A Middle Ground: 80-20 rule for Security

. Some data elements are
more critical than others

- E.g., patient’s name, SS#, DOB

. |If Private Health Info (PHI) or
Pll (Personal Identifiable

Info) is removed, then rest of
data (>80%) can be shared

- PHI or Pll can be added back
later on, end result is same

*https://blog.openmined.org/differential-privacy-using-pydp/

QUERY
RESULT #1

QUERY
RESULT #2

Outcome is the
same with or

without




Mixed-mode machine learning architecture

Central Controller
Fusion of shared Al Algorithms
/\ Shared

computing
resources

Shared data
sources

FL Code

Some data is shared
centrally. FL algorithm
travels from

one site to other for
accessing

Private data sources and
improve the model
incrementally.

Differential Privacy: Divide the data in two parts: private and public
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HFL Medical Drug Research Study

Consider three entities, a Hospital = A, Drug Company = B, and Medical Researcher = C, with a single centralized server.

Some notations are below:

ty, = data copying delays from Hospital A to central server

typ, = data copying delays from Drug Company B to central server

ty. = data copying delays from Medical Company C to central server

tpq = time for code and weights of Neural Network to travel from central server to hospital A

tpp = time for code and weights of Neural Network to travel from central server to Drug Company B
tpc = time for code and weights of Neural Network to travel from central server to Medical Researcher C

tpx = Program execution time

n = number of training iterations

So, total worst case (asynchronized) data copy time to central database is = t;, + t, + tac

and in a completely centralized model, total worst case run time will be T1 = t 3, + tgp + tge + 1 * tpy

For a fully decentralized Federated learning system, total worst run time will be T2 = n * (tpq + tpp + tye + tpx)



Program size is smaller than dataset size with 0% data share : Hybrid = de-centralized Program size is smaller than dataset size with 50% data share : Hybrid is in the middle
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Program size is smaller than dataset size with 100% data share : Hybrid = centralized

Program size is smaller than dataset size with 80% data share : Hybrid is even more towards centralizad
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Program size is bigger than dataset size with 0% data share : Hybrid = De-centralized Program size is bigger than dataset size with 50% data share : Hybrid is in the middle
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Program size is bigger than dataset size with 80% data share : Hybrid is even more towards centralized Program size is bigger than dataset size with 100% data share : Hybrid = centralized
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Centralized model when dataset size is greater than program size and vice-versa

—0— completely centralized model(T1) when tds=tPs
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Option to send reports directly to other

hived “full , doctors outside the hospital’s network
Archived ‘full case Hospital

data requested and DBs

sent to Patient T Doctors
- outside

network

Patient reports sent

PHI records
Patient App adds PHI
De-identified (Web or Native
data stored in |0S/Android)
a Public Cloud Archived ‘full case’ data accessed & reviewed

Cloud Software Project Management

Non-PHI storage in the Cloud

For remote viewing, advanced analysis,
and sharing of cloud data

How to deliver on time and within budget?

by

Pramod Chandra P. Bhatt

Naresh Kumar Sehgal
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Edge Computing Security Challenges
* Definition of a Cloud has been expanding, getting out of a data center
* Perimeter defense is insufficient, as there is no fixed perimeter
* Fixed protocols for boundaries of security fail, shared security model
* A fixed universal security policy is inadequate, each party owns their data

* Resources on Edge need to be adaptive, for varying amount of compute



Conclusions

1. If de-centralized configuration is slower
* Then share more data, but keep private data on-site for security

2. If centralized configuration is slower

°* Then keep all/more data on-site, and use Edge Computing
* Better for both security and performance

3. Hybrid FL Challenges

a) Data sharing considerations: Honest sharing and Security concerns

b) Managing incremental data changes: Keeping all parties in synch
c) Local vs. global ML models: Performance vs. Accuracy tradeoffs
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