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Tell me how ChatGPT works.

ChatGPT is a large language model that uses deep learning techniques to generate
human-like text. It is based on the GPT (Generative Pre-trained Transformer) architecture,
which uses a transformer neural network to process and generate text. The model is pre-
trained on a massive dataset of text, such as books, articles, and websites, so it can

understand the patterns and structure of natural language. When given a prompt or a

starting point, the model uses this pre-trained knowledge to generate text that continues

the given input in a coherent and natural way.
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Links https://www.cnn.com/2007/09/20/us-president-meets-british-pm
LONDON, England (CNN) — U.S. President George W. Bush met with British Prime Minister Tony
Blair on Monday to discuss the war in Iraq, according to a statement from Blair's office.".n' nThe
meeting was held at 10 Downing Street and lasted about an hour.’\n' n"The two leaders discussed
Iraq and other international 1ssues of mutual concern,” said Blair." n' nBush, who is scheduled to
meet Wednesday with Russian President Viadimir Putin, will also visit Germany for talks later this
week.\n'nln his statement, Blair said, "We agreed that we should continue our efforts together to
bring peace and stability to Iraq. We both reaffirmed our commitment to working closely together,
as well as to continuing to work constructively toward achieving lasting security and prosperity
throughout the Middle East region.”  n nBush’s trip comes after he visited Britain last week where he
spoke out against terrorism while visiting Buckingham Palace." n% nHe has been criticized by some
lawmakers over what they say are insufficient military resources being devoted to fighting terrorism.

[N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher, “CTRL: A Conditional Transformer
Language Model for Controllable Generation,” Sept. 2019.]
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And Now, From I.B.M., Chef Watson
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L] L]
D] glta] GaStI‘OIIOIIIY WHEN AN IBM ALGORITHM COOKS, THINGS GET COMPLICATED—AND TASTY.
L

IBM’s Al-like computer systems aren’t limited
to Watson, the Jeopardy-winning
supercomputer that schooled Ken Jennings on
national television. In fact, IBM researchers
:k:g““ foresee a not-so-distant future when
algorithms will be a replacement for inefficient
customer service models, a diagnostic tool for

doctors, and believe it or not, chefs.
meeting on Thursday.

By STEVE LOHR “ Researcher Lav Varshney has already built an
Pub o.;& algorithm that creates recipes from parameters
1.B.M.’s Watson beat “Jeopardy” champions two FACEBOOK TR likecaisinelype, dictary resfrictions, ad

course. The system determines optimal

years ago. But can it whip up something tastyin v TwiTTER : mixtures based on three things: tens of
the kitchen? 54 coooLe+ thcusan‘ds ofrecip(Ies taken from. sources like
- CHRARELIZED the Institute of Culinary Educ.atlon or the ]
Thatisjustone of £ sAvE BANANAS Internet, a database of hedonic psychophysics
l\Cioo\l'-:r:::h » the questions that [ emalL (what humans like to eat), and food chemistry.
News from the Bits I.B.M. is asking as 0 susse o . - G A
% i i cookbook, providing chefs, who already know
technology it tries to expand : AN 3 g
industry, 1 i S pRINT cooking basics, with suggestions for billions of
including its artificial ingredient combinations but no instructions.
start-ups, the Internet, intelligence B reprinTs
enterprise and gadgets. To test its skill, we pitted IBM’s algorithm
On'Twitter: @nytimesbits. testinokgg and against go-to-reci l:aresourceE igcurious
turn Watson into e 4 : ,
7 (owned by WIRED's parent company, Condé
something that .. Nast). We searched the site for a Caribbean
actually makes commercial sense. plantain dessert and found a tasty concoction

with rum and coconut sauce. With the same

parameters, IBM’s computer generated a list of
about 50 ingredients, including orange,
papaya, and cayenne pepper, from which IBM
researcher and professional chef Florian Pinel

Fantl developed a mind-blowing Caymanian parfait.
While the IBM dessert tasted better, it was also

[The New York Times, 27 Feb. 2013] s I B M S T AST E
[San Jose Mercury News, 28 Feb. 2013] T

[IEEE Spectrum, 31 May 2013]

[Wired, 1 Oct. 2013] MASTE R

COGNITIVE COMPUTING
TAKES ONANEW FRONTIER:
MEALPLANNING
BYVALERIEROSS

76 | JUN2013 | WORTH AMERICAN | SPECTRUM.IEZE.ORG



Cognitive Cooking
AT AL with Chef Watson
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Concrete that has half as much embodied carbon and is much stronger

* 8% of worldwide CO, emissions caused by cement production Conditional Variational Autoencoder (CVAE)
* Reduce environmental impacts of construction materials while

complying with product specifications

Strength =—s

Age ——

Environmental

* UCI ML repository concrete strength dataset + environmental impact
impact evaluated using the Cement Sustainability Initiative’s
Environmental Product Declaration tool:
* 1030 instances ormaa
* 8 input variables (composition)
* 1 (compressive strength) |
* 12 (environmental impact) output variables

—_—

Reconstructed

Strength [0,1]

e Train a conditional generative neural network model to be able Age {0,136
to create novel formulations of concrete Environmental Impact | [0,1]*2
Concrete formula [0,1]”
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Concrete that has half as much embodied carbon and is much stronger

B coment .
T slag

[Iflyash Isomap embedding of concrete formulations
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[X. Ge, R. T. Goodwin, H. Yu, P. Romero, O. Abdelrahman, A. Sudhalkar, J. Kusuma, R. Cialdella, N. Garg, and
L. R. Varshney, “Accelerated Design and Deployment of Low-Carbon Concrete for Data Centers,” in Proc. 5th

ACM SIGCAS Conf. Computing and Sustainable Societies (COMPASS ’22), Seattle, July 2022.]
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Artificial Weather Generators
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[A. Jain, D. Oliveira, A. Sharma, L. R. Varshney, C. Watson, K. Weldemariam, D. Wuebbles, and B. Zadrozny, “Toward an Al-based
Framework for Accelerated Discovery of Climate Impacts on Agriculture,” presented at AAAI Fall Symposium on Al Meets Food Security:
Intelligent Approaches for Climate-Aware Agriculture, Nov. 2021.]
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Protein Language Models: Using Al to Generate Proteins

[J. Vig, A. Madani, L. R. Varshney, C. Xiong, R. Socher, and N. F. Rajani, “BERTology Meets Biology: Interpreting Attention in Protein
Language Models,” in Proceedings of the 9th International Conference on Learning Representations (ICLR), May 2021.]
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Kush R. Varshney is a distinguished research staff member at IBM Research
— T. J. Watson Research Center where he leads the machine learning group
in the Foundations of Trustworthy Al department and co-directs the IBM
Science for Social Good initiative. He has invented several new methods in
the fairness, interpretability, robustness, transparency, and safety of machine
learning systems and applied them with numerous private corporations and
. social change organizations. His team developed the Al Fairness 360, Al
Explainability 360, and Uncertainty Quantification 360 open-source toolkits.

Trustworthy

Machine Learning

concepts for developing accurate, fair, robust, explainable, transparent,
inclusive, empowering, and beneficial machine learning systems

Trustworthy Machine Learning

Accuracy is not enough when you’re developing machine learning systems for consequential
application domains. You also need to make sure that your models are fair, have not been
tampered with, will not fall apart in different conditions, and can be understood by people. Your
design and development process has to be transparent and inclusive. You don’t want the systems
you create to be harmful, but to help people flourish in ways they consent to. All of these
considerations beyond accuracy that make machine learning safe, responsible, and worthy of our
trust have been described by many experts as the biggest challenge of the next five years. | hope
this book equips you with the thought process to meet this challenge.

T OUIYORIA AYIIOMISNI],

This book is most appropriate for project managers, data scientists, and other practitioners in high-
stakes domains who care about the broader impact of their work, have the patience to think about
what they’re doing before they jump in, and do not shy away from a little math.

Suruiea

In writing the book, | have taken advantage of the dual nature of my job as an applied data
scientist part of the time and a machine learning researcher the other part of the time. Each
chapter focuses on a different use case that technologists tend to face when developing algorithms
for financial services, health care, workforce management, social change, and other areas. These
use cases are fictionalized versions of real engagements I’ve worked on. The contents bring in the
latest research from trustworthy machine learning, including some that I’ve personally conducted
as a machine learning researcher.

—Kush

Kush R. Varshney

Asuysaep
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An ethical framework from biomedicine

Beauchamp and Childress

Transfer to engineering so as to capture utilitarian and rights-based approaches to ethical thinking in a
simple manner

e Justice: The principle of fairness and equality among individuals
e Beneficence: The principle of acting with the best interests of others in mind
e Non-maleficence: The principle that “above all, do no harm,” as in the Hippocratic Oath

e Respect for Autonomy: The principle that individuals should have the right to make their own
choices

(All of these principles should, prima facie, be held and when in conflict should be given equal weight)

[L. R. Varshney, “Engineering for Problems of Excess,” in Proc. 2014 IEEE Int. Symp. Ethics in Engineering, Science, and
Technology, May 2014.]
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SEPTEMBER 12, 2023

WHITE H FACT SHEET: Biden-Harris
Administration Secures Voluntary
Commitments from Eight Additional
Artificial Intelligence Companies to

Amazon, Anthropic, Google, Inflection, Manage the Risks Posed by Al

Meta, Microsoft, OpenAl, Adobe, Cohere,
o ) Cfit » BRIEFING ROOM » STATEMENTS AND RELEASES
IBM, Nvidia, Palantir, Salesforce, Scale Al,

and Stability

Builds on commitments from seven top AI companies secured by the Biden-

Harris Administration in July

T
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* The companies commit to internal and external security testing
of their Al systems before their release.

* The companies commit to sharing information across the

industry and with governments, civil society, and academia on
managing Al risks.

ECE ILLINOIS



* The companies commit to investing in cybersecurity and insider
threat safeguards to protect proprietary and unreleased model
weights.

* The companies commit to facilitating third-party discovery and
reporting of vulnerabilities in their Al systems.
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* The companies commit to developing robust technical
mechanisms to ensure that users know when content is Al
generated, such as a watermarking system.

 The companies commit to publicly reporting their Al systems’
capabilities, limitations, and areas of appropriate and
Inappropriate use.
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* The companies commit to prioritizing research on the societal
risks that Al systems can pose, including on avoiding harmful
bias and discrimination, and protecting privacy.

e The companies commit to develop and deploy advanced Al
systems to help address society’s greatest challenges.
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THE WHITE HOUSE

FACT SHEET: Biden-Harris
Administration Secures Voluntary
Commitments from Leading

Artificial Intelligence Companies
to Manage the Risks Posed by Al

) » BRIEFING ROOM » STATEMENTS AND RELEASES
T
Voluntary commitments — underscoring safety, security, and trust -
. mark a critical step toward developing responsible Al
Biden-Harris Administration will continue to take decisive action by

developing an Executive Order and pursuing bipartisan legislation to
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THE WHITE HOUSE .

FACT SHEET: Biden-Harris
Administration Secures Voluntary
Commitments from Leading

Artificial Intelligence Companies
to Manage the Risks Posed by Al

) » BRIEFING ROOM » STATEMENTS AND RELEASES
T
Voluntary commitments — underscoring safety, security, and trust -
. mark a critical step toward developing responsible Al
Biden-Harris Administration will continue to take decisive action by

developing an Executive Order and pursuing bipartisan legislation to
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Al for good

Obesity: Strong association of obesity rates in urban Urban Blight: Rank vacant parcels according to
neighborhoods with social capital measures (venues for  likelihoods of occupied status and neighborhood impact
interaction as per Foursquare) * Dbipartite ranking + spatiotemporal modeling

* regression models

[Data for Good b [Technological Forecasting

Exchange (D4GX), - and Social Change, 2014]

2015] o7

Sustainable Farming: Redistribution of permits in Sustainable/Healthy Food: Computationally create

Himalayas can significantly improve sustainability culinary recipes according to perceived flavor and

(environmental/economic) of timber farming novelty using ingredients such as algae protein

* network flow optimization * computational creativity and hedonic perception
[Data for Good P, B [Good Food
Exchange (D4GX), ‘ O S0 Conference, 2018]
2018] | 2 :

g a1 porce vee g

Villages to Priority Tree Plantings
Based on Optimization Model
With Clustering o 5 W ek
i Bilaspur District, Himachal Pradesh, India =~~~
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“Shannon himself told me that he believes the most promising new
developments in information theory will come from work on very

complex machines, especially from research into artificial intelligence.”
[J. Campbell, Grammatical Man, 1982]

[L. R. Varshney, “Mathematizing the World,” Issues in Science and Technology, vol. 35, no. 2, pp. 93-95, Winter 2019.]
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Automatic knowledge discovery (An automatic music theorist)

A way to learn the principles of quality (laws of music theory)

music pieces »| auto-theorist » theory (rules)

Computational creativity algorithms for music composition

theory (rules) »| auto-composer > music pieces
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Dimensions of interpretability [Selbst and Barocas, 2018]

* What sets machine learning models apart from other decision-making
mechanisms are their inscrutability and nonintuitiveness
— Inscrutability suggests that models available for direct inspection may defy understanding

— Nonintuitiveness suggests that even where models are understandable, they may rest on
apparent statistical relationships that defy intuition

— Most extant work on interpretable ML/AI only addresses inscrutability, but not nonintuitiveness

* Dealing with inscrutability requires providing a sensible description of rules;
addressing nonintuitiveness requires providing satisfying explanation for why the
rules are what they are

For numerous settings, may need technical solutions to
both inscrutability and nonintuitiveness

ECE ILLINOIS



Human-interpretable concept learning

* Learn laws of nature from raw data, e.g. for scientific discovery or for complex systems
where epistemic uncertainty (unknown unknowns) can be dangerous [Al safety]|

* Learn what black box systems do, whether human or machine, not just in terms of the
statistical nature of bias but also the rules that govern behavior |Al ethics]

* Learn principles of human culture, e.g. what are the laws of music theory that make
Bach’s chorales what they are or psychophysical principles of flavor in world cuisines
|Al creativity]

s(4,0)]

AVERAGE SURPRISE

s@ =

max
P4(a):E[q(A)]2Q
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PROBABILITY
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Figure I: ILL's main idea: decompose the signal into rules that are individually simple but collectively
expressive. A lattice is first constructed regardless of the signal (prior-driven), yet the same lattice may

be later used to learn rules (data-driven) of signals from different topics, e.g. music and chemistry
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[H.Yu, J. A. Evans, and L. R. Varshney, “Information Lattice Learning,” Journal of Artificial Intelligence Research

vol. 77, pp. 971-1019, July 2023.]
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Learn human-interpretable concept hierarchies (not just rules)

H Fundamentally, most current deep-

fe] How to use this diagram learning based language models

PENTATONIC Don't tryvleaming a sut_)jecl

e from a Mgher i represent sentences as mere sequences

e ve been thoroughly learnt!

s | [ Dovebeenhoreiem of words, whereas Chomsky has long
T | argued that language has a hierarchical
Py || structure, in which larger structures are

N A recursively constructed out of smaller
R T components.”
s ey S arom — Gary Marcus |arXiv:1801.00631]
et et

Stave . Clefs . Note duration

ODARONOTATON &2,

Rests . Dots . Ties . Dynamics

MAJOR SCALEFORMULA  JrJdrdsdrdritds

the CHROMATIC SCALE:

TONE and SEMITONE a SEMITONE i tho interval botween any two adjacont noles

a TOME is the interval between any two alternate notes

/ (Demonstrate using piano keyboard) ~ Descending: EEbDDbCBBbAAbGGbF E

CHROMATIC SCALE ~ Ascending: EFF#GGtAA#BCCHDDAE ?

| OPEN STRING NOTE NAMES Elephants And Donkeys Grow Big Ears

[http://www.teachguitar.com/content/tmpyramid.htm]
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Automatic concept learning

Concept learning is phase before any task solving/performing

» Self-exploration: ultimate goal is learning domain concepts/knowledge from universal
priors—priors that encode no domain knowledge

*  Group-theoretic foundations and generalization of Shannon’s information lattice

» Self-explanation: aim for not only the learned results but also the entire leaning process
to be human-interpretable

*  Iterative student-teacher architecture for learning algorithm, which produces interpretable hierarchy of
interpretable concepts (with a particular mechanistic cause: symmetry) and its trace

ECE ILLINOIS




[H. Yu, I. Mineyev, and L. R. Varshney, “A Group-Theoretic Approach to Computational Abstraction: Symmetry-
Driven Hierarchical Clustering,” Journal of Machine Learning Research, vol. 24, no. 47, pp. 1-61, 2023.]
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{red, blue} {convex, concave} {trigon, tetragon, pentagon}
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Representation: Data space

Data space: (X, py) or (X, p) for short
 Assume a data point x € X is an i.i.d. sample drawn from a
probability distribution p

 However, the data distribution p (or an estimate of it) is known

* The goal here is not to estimate p but to explain it

Chord space: X = Z*

L1 Soprano ﬁ E5 = -76_
)
chord: = = ? € X
s ao I G4 = |67
_1134_ J
pitch: z; €Z (C4 —60) | | = omte Bp3— |58
voice: @ € {1,2,3,4}
SATB nss (| C3 — |48
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Representation: Abstraction

An abstraction A is a partition of the data space X.
X = {z1, %2, T3, T4, T5,Te }

A= {{z1,76},{23}, {%2, 24,25} }
Y v 4
cells (or less formally, clusters)

An concept is a partition cell.

A partition matrix A is a concise way of representing
an abstraction A .

1 o X3 T4 Ty Tg

1 0 0 0 0 1] Istcell

0 0 0 O] 2ndcell

1 1 1 0] 3rdcell

0 0 1
0 1 0
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Representation: Probabilistic Rule

A probabilistic rule 1s a pair:
(A pa)

where A is an abstraction (partition);

PA 1s a probability distribution over
the abstracted concepts (cells).

0.5
0.4

I I 0. ]

-

A = {{.’131, .’EG}: {$3} {-172: L4, '175}}
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“Most birds fly; but rare for fish, amphibians, reptiles, mammals.”

Abstraction (of vertebrates):
Partition vertebrates into five clusters

Concepts:
Cluster A: mammals

Cluster B: reptiles
Cluster C: birds
Cluster D: fish
Cluster E: amphibians

Rule:
vertebrates that fly

A B C D E cluster

A statistical pattern on abstracted concepts (clusters)
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Abstraction as partitioning (clustering) a data space X

Definition Notation
abstraction | partition A
concept partition cell CeA
rule partition & probability distribution (A, p_4)

* A partition is not an equivalence relation (one is a set, the other is

a binary relation), but convey equivalent ideas since they induce
each other bijectively

* An equivalence relation explains a partition: elements of a set X
are put in the same cell because they are equivalent

* Abstracting the set X involves collapsing equivalent elements in X

into a single entity (an equivalence class or partition cell) where
collapsing is formalized by taking the quotient

ECE ILLINOIS
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Abstraction universe as partition lattice

* A set X can have multiple partitions (Bell number B,)
* Let By denote the family of all partitions of a set X, so |By| = B|x

« Compare partitions of a set by a partial order on By

« Partial order yields a partition lattice, a hierarchical
representation of a family of partitions

Pictorially, a directed acyclic graph (vertex: partition; edge:
coarser than)

(more specific) 4
finer *

O | SRR A
DL RS TN

2 /' ¢ ,.J 3 N \‘\\;\
“‘\\;"‘i\“\
Yelele ?.:‘,\n"-\’:/“—;.‘ .

&
b The VX 43 ¢ DRSS ! ) \
" NS AN NS Y e s b l‘\‘ \
DA A \‘ R WK WA AORNIR N
W AN e R e NN
L)

Sislee

O ,f,,",, ) *
LR 9 XRYX) %!‘\ﬁ' \tq.‘q’ N
IR NS

TN XN
- $<."b”4‘,ﬁ\‘.f///'§7

Ccoarscer

(more general) v
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Abstraction universe as partition lattice

* Even for a finite set X of relatively small size, the complete
abstraction universe By can be quite large and complicated to
visualize (Bell number grows very quickly, to say nothing of edges)

* However, not all arbitrary partitions are of interest

What part of 8By should we focus on?

ECE ILLINOIS




Abstraction universe as partition lattice

What part of 8By should we focus on?

* Feature-induced abstractions
* Consider a pool of feature functions @, spanned by a finite set of basis features that are
individually “simple” (e.g. basic arithmetic operators like sort and mod) and easy for people to
interpret
* Key ideais to break a rich pool of domain-specific features into a set of domain-agnostic basis
features as building blocks

* Symmetry-induced abstractions

ECE ILLINOIS




Symmetry-induced abstraction

* Consider the symmetric group (Sy,o) defined over a set X, whose
group elements are all the bijections from X to X and whose group
operation is (function) composition

* A bijection from X to X is also called a transformation of X, so the
symmetric group Sy comprises all transformations of X, and is
also called the transformation group of X, denoted F(X)

* Given a set X and a subgroup H < F(X), we define an H-action on
Xbyh:-x =h(x)forany h € H, x € X and the orbitof x € X
under H as the set Hx = {h(x)|h € H}

* Each orbit is an equivalence class, so the quotient X/H = X/~ isa
partition of X

» We say this abstraction respects H-symmetry or H-invariance

) group action equiv. rel.

a subgroup of F(X » orbits —— "y a partition — an abstraction of X
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Duality: From subgroup lattice to abstraction (semi)universe

Definition The abstraction generating function is the mapping
m: Hexy = By, where H ) is the collection of all subgroups of F(X), By
is the family of all partitions of X, and for any H € Hyx), m(H) = X/H.

Theorem (Duality) Let (}[ﬁ‘(x), <) be the subgroup lattice for F(X) and
the abstraction generating function. Then (n(}[ﬁ‘(x)), <) is an abstraction
meet-semiuniverse for X. That is:

1. partial-order reversal: if A < B, then n(4) > n(B)
2. strong duality: m(AV B) = m(A) At (B)
3. weak duality: m(A A B) = n(A) v (B)

AV B m(AV B) A B w(A) w(B)
m(A) Aw(B)

m(A)vw(B)®

|

A B m(A) w(B) AAB W(Aof\ B)

(a) From join to meet. (b) From meet to join.
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Duality: From subgroup lattice to abstraction (semi)universe

» If one has already computed abstractions m(A) and 7 (B), then instead of computing 7(A vV B)
from A V B, one can compute the meet m(A4) A m(B), which is generally computationally less
expensive than computing A V B and identifying all orbits in (A vV B)

* The computer algebra system GAP provides efficient algorithmic methods to construct the
subgroup lattice for a given group, and even maintains data libraries for special groups and
their subgroup lattices

(a) Subgroups under consideration. (b) Spaces under consideration.

[H. Yu, I. Mineyev, and L. R. Varshney, “Orbit Computation for Atomically Generated Subgroups of Isometries of Z",”
SIAM Journal on Applied Algebra and Geometry, vol. 5, no. 3, pp. 479-505, Sept. 2021.]
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THE LATTICE THEORY OF INFORLMATION
by
G, e Shannon

* An information element is an
equivalence class of random variables
w.r.t. inducing the same og-algebra

* An information lattice is a lattice of information elements, where partial
order defined by x < y & H(x|y) = 0 where H is the Shannon entropy.
The join of two information elements the total information; the meet of
two information elements is the common information

* Our abstraction-generation framework generalizes Shannon’s
information lattice, without needing to introduce information-theoretic

functionals like entropy

* More importantly gives generating chain to bring learning into picture

Separation Of clustering Pa*rt?'t%:on lattice jfnformatz'.on lattice
-y . element partition (P); information element (x);
from statistics: partition . g . .

) clustering (X, P): probability space (X, X, P);
!attlce Ca.n be th_OUgh_t as an equiv. class of classifications equiv. class of random variables
information lattice without partial order | P < Q x <y < H(zly)=0
probability measure join PvQ T4y

meet PAQ Ty
metric undefined plr,y) = H(zx|ly) + H(y|x)
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Information-theory inspired algorithm for rule learning

Learning is achieved by statistical inference on a partition lattice

The Self-Learning Loop

A Teacher-Student Architecture: Learning by Comparison

input
data
WL\

teacher | The k-th Loop | student

Discriminator | Generator
N Yl ]
|

ruleset

rule
(AR A(k))\_/{(A() A<1>)}

[H.Yu and L. R. Varshney, “Towards Deep Interpretability (MUS-ROVER ll): Learning Hierarchical Representations of Tonal
Music,” in Proc. 5th International Conference on Learning Representations (ICLR), April 2017.]
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Information-theory inspired algorithm for rule learning

Learning is achieved by statistical inference on a partition lattice

MUS-ROVER’s self-learning loop:

The iterative cooperation between a discriminator
(teacher) and a generator (student).

The teacher solves: music The student solves:

input
maximize [ (p{k_1> || }6 ) 5 & (k—1) ",/ (k) maximize .S p{k)
b, stu @ p : Pstu / Pt q st
e Dree [06) - v} [ oWl e
subject to ¢ € O\ P teacher | The k-th Loop | student subject to  py. €'y
\ @ /
\ ‘ pm =
stu
_ L rule ruleset _
(discrete optimization) T, \_/ (T, }k (linear least-squares)
ifi=1
max. Bayesian surprise max. creativity
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Simple human-interpretable rules

Compositional Rule Examples:

feature
T~ ¢ . pitch class in the soprano voice

feature
d1str1but1orT“‘“*p I I I B _ l I

C C: DD E F F: G G A

This rule can be interpreted or translated to:
“The soprano voice is built on a diatonic scale.”
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Hierarchical concept learning

Compositional Rule Examples:

¢ . interval class between soprano and bass

Po I N 1 S -

P8 m2 M2m3 M3 P4 TT P5 m6 M6 m7 M7
“Individual perfect octaves (P8s) are favored as most consonant.”

-_III Illl- 2-gram

P8 m2 M2m3 M3 P4 TT P5 m6 M6 m7 M7 conditioned on P8
“Parallel perfect octaves (P8s) are uncommon.”
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This form of compositional rules are in fact human-interpretable

window: (1,2,3,4)
basis feature: order
n-gram: 1

s32 |
4=F<2<1
4<3<2=1
4<2<3=]
4<3=2<1
121314

Score Range | # of Students

50
40,50)
30,40)
20,30)
10,20)
0,10)
0

g = = M~ Ww

Table 1: Students’ final scores.

[H.Yu, H. Taube, J. A. Evans, and L. R. Varshney, “Human Evaluation of Interpretability: The Case of Al-Generated
Music Knowledge,” in ACM CHI 2020 Workshop on Artificial Intelligence for HCI: A Modern Approach, April 2020.]
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Hierarchy of music theory concepts

AL raw representation
B in the tenor _. closed position V7 chord
& A

SRS

e o o
root position 7th chord
. © o o o higher (deeper)-level
\& Z’;’th ;l:n'd abstractions
sonority

Compositional rules are extracted not simply as a linear list, but as
hierarchical families and sub-families.
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@ unlearned
® ]-gram
@® 3-gram

® 10-gram
® 6-gram

@ 7-gram

© 4-gram

7 { . o ...._.. ......._,“_/ !
N .
L)t \ . . o . \_ ¥
! I ﬁ_ .I_ ‘_ —_— ’ - v H._r ..*_ y
/ ___..__.r“ oy i A
/ y . £ _\....... = 2 I.”. . . . Dy
f e K FA Ty .........1... ol e W %
\ D QS\ T
__ I T2 T A\
\J

/ T v g ’s s/l
i (R R \‘. — LT .
i WX S8 =aiae iy

W, E
SN y

- XA e

NS e e A (wrire /4“\
S VSN Y o ik
g f(_'.#l S |.,r.-.. e r'd' s .__‘_!l '.—'
R~ VAR

AR ANA KRS T—-o—F

= =5 ", ) i "... .
—— 4] Q77 7 ) A —

o e o S A e = —

) ; :
SN 870" i W )

& 4&4@‘0&1&’%‘.‘0‘.‘ 1
e
: bl
\ [

O
N NN I,
—

= S8,
N NS —
TS e 0/
N N
N e g
hffﬂhﬂﬁrﬁw

s music mind for writing chorales. The underlying directed

down information lattice.

Visualization of Bach’

acyclic graph signifies an upside

L
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=
r
—
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ILL recovers much known music theory

* voice leading
* counter point

+ scale, consonance & dissonance
* voice spacing, crossing, overlap
+ chord quality, inversion, progression

« music transformations: OPTIC
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ILL recovers much known music theory

weovieae MUS 101, 102, 201 (75 topics 1n total):

MUSICIAN

not recoverable due to input

covered missed
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ILL recovers much known music theory

% COMPLETE MUS 101, 102, 201 (75 topics in total):

MUSICIAN

not recoverable due to input

covered missed

requires info other than MIDI pitches and durations:
+ music accents: requires beats, dynamics, etc.
+ enharmonic re-spellings: German 6th, fully dim, etc.

ECE ILLINOIS



ILL recovers much known music theory

% COMPLETE MUS 101, 102, 201 (68 recoverable topics in total):

MUSICIAN

covered missed

captured but not explicitly presented:
- phrase models, EPMs, sentence structure, etc.
- music forms: binary, ternary, rondo, sonata, etc.

Suggests an extension of the n-gram models to temporal abstractions:

transitions of abstractions — abstractions of transitions
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ILL discovers new music theory

Interesting Unresolved tritone (TT):
probabilistic TT —— m7
pattern “harmonic” escape tone or changing tone?
Rule Trace
1 order o W{1,2,3,4}
2 order o diff o sort o wy; 9 4}
: 3 order o diff omod;s 0wy 93}
Interestlng 4 order o diff o diff owyy 934
abstraction 5 order o sort omodjs © w3 3 4}
6 order o sort omodys © wyy 3 4}
7 order o sort omod;p 0 wyy 2 3.4}
8 modj © Wy}
9 modjyp o diff o w{z,;g}

P
S

modip odiff o w{3 4}
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Learning laws of neurogenesis
A B C ) Amacrine Neurogenic

i Early RPCs @ Photo. Precurs.
Time o
E10 PO (M @E4 @EIE @P2 @ Int RPCs .RE.-CS

(0 Late RPCs A
%...;g
by - -.i

A 4

Co 2
, : H H
- wr).l
-

Horizontal

20 0 20 40

Photo. Precurs.
Neurogenic

8. RGCs
=. Amacrine Cells
= Late RPCs
8 Int. RPCs

Early RPCs

[B. Clark, et al., “Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification,” Neuron, June 2019.]

Single-cell RNA sequence data analysis for understanding the rules that govern pattern

formation in neurodevelopment
[H. Yu, L. R. Varshney, and G. Stein-O’Brien, “Towards Learning Human-Interpretable Laws of Neurogenesis from Single-Cell
RNA-Seq Data via Information Lattices,” at Learning Meaningful Representations of Life Workshop at NeurlPS, Dec. 2019.]
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From automatic knowledge discovery to co-creativity

A way to learn the principles of quality (laws of music theory)

music pieces >

auto-theorist

» theory (rules)

Computational creativity algorithms for music composition

theory (rules) >

auto-composer

> music pieces
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Vlichael Manson

B

HIPHOP XPRESS

)\l INOIS

E St. Louis
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Trustworthy Generative Al

Technology

[e.g. Kocree, Inc.]

Policy

[e.g. White House]
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Lav R. Varshney
Kocree, Inc.
University of lllinois Urbana-Champaign

lvarshney@kocree.net
varshney@illinois.edu
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