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[N. S. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R.  Socher, “CTRL: A Conditional Transformer 
Language Model for Controllable Generation,” Sept. 2019.]
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[The New York Times, 27 Feb. 2013]

[San Jose Mercury News, 28 Feb. 2013]

[IEEE Spectrum, 31 May 2013]

[Wired, 1 Oct. 2013]
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Concrete that has half as much embodied carbon and is much stronger

• 8% of worldwide CO2 emissions caused by cement production
• Reduce environmental impacts of construction materials while 

complying with product specifications

• UCI ML repository concrete strength dataset + environmental 
impact evaluated using the Cement Sustainability Initiative’s 
Environmental Product Declaration tool:

• 1030 instances
• 8 input variables (composition)
• 1 (compressive strength) 
• 12 (environmental impact) output variables

• Train a conditional generative neural network model to be able 
to create novel formulations of concrete

Strength [0,1]

Age 0,1 6

Environmental Impact 0,1 12

Concrete formula 0,1 7

Conditional Variational Autoencoder (CVAE)
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Stronger and more than 50% reduction in carbon emissions

Isomap embedding of concrete formulations
DeKalb data center that has been constructed

Concrete that has half as much embodied carbon and is much stronger
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[X. Ge, R. T. Goodwin, H. Yu, P. Romero, O. Abdelrahman, A. Sudhalkar, J. Kusuma, R. Cialdella, N. Garg, and 
L. R. Varshney, “Accelerated Design and Deployment of Low-Carbon Concrete for Data Centers,” in Proc. 5th 
ACM SIGCAS Conf. Computing and Sustainable Societies (COMPASS ’22), Seattle, July 2022.]
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www.ensaras.com



Artificial Weather Generators

[A. Jain, D. Oliveira, A. Sharma, L. R. Varshney, C. Watson, K. Weldemariam, D. Wuebbles, and B. Zadrozny, “Toward an AI-based 
Framework for Accelerated Discovery of Climate Impacts on Agriculture,” presented at AAAI Fall Symposium on AI Meets Food Security: 
Intelligent Approaches for Climate-Aware Agriculture, Nov. 2021.]



Protein Language Models: Using AI to Generate Proteins

[J. Vig, A. Madani, L. R. Varshney, C. Xiong, R. Socher, and N. F. Rajani, “BERTology Meets Biology: Interpreting Attention in Protein 
Language Models,” in Proceedings of the 9th International Conference on Learning Representations (ICLR), May 2021.]
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An ethical framework from biomedicine
Beauchamp and Childress

Transfer to engineering so as to capture utilitarian and rights-based approaches to ethical thinking in a 
simple manner

● Justice: The principle of fairness and equality among individuals

● Beneficence: The principle of acting with the best interests of others in mind

● Non-maleficence: The principle that “above all, do no harm,” as in the Hippocratic Oath 

● Respect for Autonomy: The principle that individuals should have the right to make their own 
choices

(All of these principles should, prima facie, be held and when in conflict should be given equal weight)

[L. R. Varshney, “Engineering for Problems of Excess,” in Proc. 2014 IEEE Int. Symp. Ethics in Engineering, Science, and 

Technology, May 2014.]
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Amazon, Anthropic, Google, Inflection, 
Meta, Microsoft, OpenAI, Adobe, Cohere, 
IBM, Nvidia, Palantir, Salesforce, Scale AI, 
and Stability



• The companies commit to internal and external security testing 
of their AI systems before their release.

• The companies commit to sharing information across the 
industry and with governments, civil society, and academia on 
managing AI risks.

19



• The companies commit to investing in cybersecurity and insider 
threat safeguards to protect proprietary and unreleased model 
weights.

• The companies commit to facilitating third-party discovery and 
reporting of vulnerabilities in their AI systems.
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• The companies commit to developing robust technical 
mechanisms to ensure that users know when content is AI 
generated, such as a watermarking system.

• The companies commit to publicly reporting their AI systems’ 
capabilities, limitations, and areas of appropriate and 
inappropriate use.

21



• The companies commit to prioritizing research on the societal 
risks that AI systems can pose, including on avoiding harmful 
bias and discrimination, and protecting privacy.

• The companies commit to develop and deploy advanced AI 
systems to help address society’s greatest challenges.
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Obesity: Strong association of obesity rates in urban 
neighborhoods with social capital measures (venues for 
interaction as per Foursquare)
• regression models

Urban Blight: Rank vacant parcels according to 
likelihoods of occupied status and neighborhood impact
• bipartite ranking + spatiotemporal modeling

Sustainable Farming: Redistribution of permits in 
Himalayas can significantly improve sustainability 
(environmental/economic) of timber farming
• network flow optimization

Sustainable/Healthy Food: Computationally create 
culinary recipes according to perceived flavor and 
novelty using ingredients such as algae protein
• computational creativity and hedonic perception

AI for good

[Data for Good 
Exchange (D4GX), 
2018]

[Technological Forecasting 
and Social Change, 2014]

[Good Food 
Conference, 2018]

[Data for Good 
Exchange (D4GX), 
2015]
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“Shannon himself told me that he believes the most promising new 
developments in information theory will come from work on very 
complex machines, especially from research into artificial intelligence.” 
[J. Campbell, Grammatical Man, 1982]

[L. R. Varshney, “Mathematizing the World,” Issues in Science and Technology, vol. 35, no. 2, pp. 93–95, Winter 2019.]
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Automatic knowledge discovery (An automatic music theorist)

A way to learn the principles of quality (laws of music theory)

Computational creativity algorithms for music composition 

29



Dimensions of interpretability [Selbst and Barocas, 2018]

• What sets machine learning models apart from other decision-making 
mechanisms are their inscrutability and nonintuitiveness
– Inscrutability suggests that models available for direct inspection may defy understanding

– Nonintuitiveness suggests that even where models are understandable, they may rest on 
apparent statistical relationships that defy intuition

– Most extant work on interpretable ML/AI only addresses inscrutability, but not nonintuitiveness

• Dealing with inscrutability requires providing a sensible description of rules; 
addressing nonintuitiveness requires providing satisfying explanation for why the 
rules are what they are

For numerous settings, may need technical solutions to 
both inscrutability and nonintuitiveness

30



Human-interpretable concept learning

• Learn laws of nature from raw data, e.g. for scientific discovery or for complex systems 
where epistemic uncertainty (unknown unknowns) can be dangerous [AI safety]

• Learn what black box systems do, whether human or machine, not just in terms of the 
statistical nature of bias but also the rules that govern behavior [AI ethics]

• Learn principles of human culture, e.g. what are the laws of music theory that make 
Bach’s chorales what they are or psychophysical principles of flavor in world cuisines 
[AI creativity]
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[H. Yu, J. A. Evans, and L. R. Varshney, “Information Lattice Learning,” Journal of Artificial Intelligence Research, 
vol. 77, pp. 971–1019, July 2023.]



Learn human-interpretable concept hierarchies (not just rules)

[http://www.teachguitar.com/content/tmpyramid.htm]

“Fundamentally, most current deep-
learning based language models 
represent sentences as mere sequences 
of words, whereas Chomsky has long 
argued that language has a hierarchical 
structure, in which larger structures are 
recursively constructed out of smaller 
components.”
            – Gary Marcus [arXiv:1801.00631] 
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Automatic concept learning

Computational creativity algorithms for music composition 
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Concept learning is phase before any task solving/performing

• Self-exploration: ultimate goal is learning domain concepts/knowledge from universal 
priors—priors that encode no domain knowledge
• Group-theoretic foundations and generalization of Shannon’s information lattice

• Self-explanation: aim for not only the learned results but also the entire leaning process 
to be human-interpretable
• Iterative student-teacher architecture for learning algorithm, which produces interpretable hierarchy of 

interpretable concepts (with a particular mechanistic cause: symmetry) and its trace
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[H. Yu, I. Mineyev, and L. R. Varshney, “A Group-Theoretic Approach to Computational Abstraction: Symmetry-
Driven Hierarchical Clustering,” Journal of Machine Learning Research, vol. 24, no. 47, pp. 1–61, 2023.]
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Representation: Data space

Data space: 𝑋, 𝑝𝑋  or 𝑋, 𝑝  for short
• Assume a data point 𝑥 ∈ 𝑋 is an i.i.d. sample drawn from a 

probability distribution 𝑝

• However, the data distribution 𝑝 (or an estimate of it) is known

• The goal here is not to estimate 𝑝 but to explain it
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Representation: Abstraction
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Representation: Probabilistic Rule
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• A partition is not an equivalence relation (one is a set, the other is 
a binary relation), but convey equivalent ideas since they induce 
each other bijectively

• An equivalence relation explains a partition: elements of a set X 
are put in the same cell because they are equivalent

• Abstracting the set X involves collapsing equivalent elements in X 
into a single entity (an equivalence class or partition cell) where 
collapsing is formalized by taking the quotient

Abstraction as partitioning (clustering) a data space X



42



• A set X can have multiple partitions (Bell number 𝐵 𝑋 )

• Let 𝔅𝑋
∗  denote the family of all partitions of a set X, so 𝔅𝑋

∗ = 𝐵 𝑋

• Compare partitions of a set by a partial order on 𝔅𝑋
∗  

• Partial order yields a partition lattice, a hierarchical 
representation of a family of partitions

43

Abstraction universe as partition lattice



• Even for a finite set X of relatively small size, the complete 
abstraction universe 𝔅𝑋

∗  can be quite large and complicated to 
visualize (Bell number grows very quickly, to say nothing of edges)

• However, not all arbitrary partitions are of interest

44

Abstraction universe as partition lattice

What part of 𝔅𝑋
∗  should we focus on?



• Even for a finite set X of relatively small size, the complete abstraction universe 𝔅𝑋
∗  

can be quite large and complicated to visualize (Bell number grows very quickly, to 
say nothing of edges)

• However, not all arbitrary partitions are of interest

• Feature-induced abstractions 
• Consider a pool of feature functions Φ, spanned by a finite set of basis features that are 

individually “simple” (e.g. basic arithmetic operators like sort and mod) and easy for people to 
interpret

• Key idea is to break a rich pool of domain-specific features into a set of domain-agnostic basis 
features as building blocks

• Symmetry-induced abstractions

45

Abstraction universe as partition lattice

What part of 𝔅𝑋
∗  should we focus on?
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Symmetry-induced abstraction

• Consider the symmetric group 𝑆𝑋,∘  defined over a set X, whose 
group elements are all the bijections from X to X and whose group 
operation is (function) composition

• A bijection from X to X is also called a transformation of X, so the 
symmetric group 𝑆𝑋  comprises all transformations of X, and is 
also called the transformation group of X, denoted F 𝑋

• Given a set X and a subgroup 𝐻 ≤ F 𝑋 , we define an H-action on 
X by ℎ ∙ 𝑥 = ℎ 𝑥  for any ℎ ∈ 𝐻, 𝑥 ∈ 𝑋 and the orbit of 𝑥 ∈ 𝑋 
under H as the set  𝐻𝑥 = ℎ 𝑥 |ℎ ∈ 𝐻

• Each orbit is an equivalence class, so the quotient 𝑋/𝐻 = 𝑋/~ is a 
partition of X 

• We say this abstraction respects H-symmetry or H-invariance
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Duality: From subgroup lattice to abstraction (semi)universe

Definition The abstraction generating function is the mapping  
𝜋: ℋF 𝑋

∗ → 𝔅𝑋
∗ , where ℋF 𝑋

∗  is the collection of all subgroups of F 𝑋 , 𝔅𝑋
∗  

is the family of all partitions of X, and for any 𝐻 ∈ ℋF 𝑋
∗ , 𝜋 𝐻 = 𝑋/𝐻.

Theorem (Duality) Let ℋF 𝑋
∗ , ≤  be the subgroup lattice for F 𝑋  and 𝜋 

the abstraction generating function.  Then 𝜋 ℋF 𝑋
∗ , ≼  is an abstraction 

meet-semiuniverse for X.  That is:

1. partial-order reversal: if 𝐴 ≤ 𝐵, then 𝜋 𝐴 ≽ 𝜋 𝐵

2. strong duality: 𝜋 𝐴 ∨ 𝐵 = 𝜋 𝐴 ∧ 𝜋 𝐵

3. weak duality: 𝜋 𝐴 ∧ 𝐵 ≽ 𝜋 𝐴 ∨ 𝜋 𝐵
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Duality: From subgroup lattice to abstraction (semi)universe

• If one has already computed abstractions 𝜋 𝐴  and 𝜋 𝐵 , then instead of computing 𝜋 𝐴 ∨ 𝐵  
from 𝐴 ∨ 𝐵, one can compute the meet 𝜋 𝐴 ∧ 𝜋 𝐵 , which is generally computationally less 
expensive than computing 𝐴 ∨ 𝐵 and identifying all orbits in 𝜋 𝐴 ∨ 𝐵

• The computer algebra system GAP provides efficient algorithmic methods to construct the 
subgroup lattice for a given group, and even maintains data libraries for special groups and 
their subgroup lattices

[H. Yu, I. Mineyev, and L. R. Varshney, “Orbit Computation for Atomically Generated Subgroups of Isometries of Zn,” 
SIAM Journal on Applied Algebra and Geometry, vol. 5, no. 3, pp. 479–505, Sept. 2021.]
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• An information element is an 
equivalence class of random variables 
w.r.t. inducing the same 𝜎-algebra

• An information lattice is a lattice of information elements, where partial 
order defined by 𝑥 ≤ 𝑦 ⟺ 𝐻 𝑥|𝑦 = 0 where H is the Shannon entropy. 
The join of two information elements the total information; the meet of 
two information elements is the common information

• Our abstraction-generation framework generalizes Shannon’s 
information lattice, without needing to introduce information-theoretic 
functionals like entropy

• More importantly gives generating chain to bring learning into picture

Separation of clustering 
from statistics: partition 
lattice can be thought as an 
information lattice without 
probability measure



Information-theory inspired algorithm for rule learning

Learning is achieved by statistical inference on a partition lattice
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Discriminator Generator

[H. Yu and L. R. Varshney, “Towards Deep Interpretability (MUS-ROVER II): Learning Hierarchical Representations of Tonal 
Music,” in Proc. 5th International Conference on Learning Representations (ICLR), April 2017.]



Information-theory inspired algorithm for rule learning

Learning is achieved by statistical inference on a partition lattice
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Simple human-interpretable rules
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Hierarchical concept learning
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This form of compositional rules are in fact human-interpretable

[H. Yu, H. Taube, J. A. Evans, and L. R. Varshney, “Human Evaluation of Interpretability: The Case of AI-Generated 
Music Knowledge,” in ACM CHI 2020 Workshop on Artificial Intelligence for HCI: A Modern Approach, April 2020.]



Hierarchy of music theory concepts
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ILL recovers much known music theory
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ILL recovers much known music theory
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ILL recovers much known music theory
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ILL recovers much known music theory

60



ILL discovers new music theory
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Learning laws of neurogenesis

[B. Clark, et al., “Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification,” Neuron, June 2019.]

Single-cell RNA sequence data analysis for understanding the rules that govern pattern 
formation in neurodevelopment

62

[H. Yu, L. R. Varshney, and G. Stein-O’Brien, “Towards Learning Human-Interpretable Laws of Neurogenesis from Single-Cell 
RNA-Seq Data via Information Lattices,” at Learning Meaningful Representations of Life Workshop at NeurIPS, Dec. 2019.]



From automatic knowledge discovery to co-creativity

A way to learn the principles of quality (laws of music theory)

Computational creativity algorithms for music composition 
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Happy Birthday:

Mozart’s K545:

Music Mosaic:
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Technology 

[e.g. Kocree, Inc.]

Policy 
[e.g. White House]
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Trustworthy Generative AI
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