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• ML-outside
– ML-Powered VLSI Clock Routing

• ML-inside
– ML-Powered Timing Optimization [DAC 2023 Best Paper Award]

• ML-inside
– ML-Powered VLSI Circuit Placement (if time permits)

Agenda
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• Sea of knobs
– PPA and TAT depend heavily on how these are tuned

Machine Learning EDA: ML Outside

EDA tool knobs PPA and TAT

Human
vs
AI
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• Physical design is harder and harder
– Can AI help them perform better (or fix problems)? 

Machine Learning EDA: ML Inside



ML-Powered Clock Routing
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Two Clock Trees

knob value
Target skew 0.08ns
Max fanout 175
Max cap (trunk) 0.03pF
Max cap (leaf) 0.07pF
Target slew (trunk) 0.21ns
Target slew (leaf) 0.03ns
Target latency 0.2ns
eGR metal usage 1, 2, 3
Cell density 0.7

knob value
Target skew 0.13ns
Max fanout 195
Max cap (trunk) 0.04pF
Max cap (leaf) 0.10pF
Target slew (trunk) 0.23ns
Target slew (leaf) 0.26ns
Target latency 0.4ns
eGR metal usage 1, 2, 3, 4
Cell density 0.6

Clock tree 1 Clock tree 2
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Very Different Results

Power: 21.8mW WL: 37.5mm
Skew: 0.15ps Latency: 0.55ps 

Power: 72.3mW WL: 76.4mm
Skew: 0.13ps Latency: 0.87ps 

tree 1 tree 2
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ML-Powered Clock Routing

placement (FF in red)
clock tree qualities + 

best CTS parameter settings

CLK WL

CLK skew

CLK power

+

+

best setting
+
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• GAN learns to generate new data with the same statistics as the training set
– Based on the "indirect" training through the discriminator
– Discriminator tells how "realistic" the “fake” data is produced by the generator
– Both the discriminator and generator improve through this competition

Generative Adversarial Network (GAN)

Ian Goodfellow (2014)



10/29

• Conditional GAN with placement-extracted features

Solution: Generative Adversarial Learning



11/29

• Useful In handling unseen netlist
– Better than # FFs, # gates, # nets, etc

Why Images?
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• Produces “fake” CTS parameter sets

Our Generator
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• Catches “fake” CTS parameter sets 

Our Discriminator
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• Predicts CTS quality from CTS parameters

Regression Learning
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• Use the generator!

How Do We Use Trained GAN?
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• Fakes are of good quality
– In terms of power, WL, and skew
– Useful to expand the DB!

GAN-Generated Fake Clock Trees
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GAN-optimized Clock Tree

88% fewer buffers
52% lower power
19% shorter WL
5% better skew

for

UNSEEN
netlist!!!

AES benchmark, TSMC 28nm, 1.1GHz clock



ML-Powered Timing Optimization
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Concurrent Clock and Data Optimization

Improve both the clock and data path timing

FF1

FF2
Clock opt: minimize the skew 
between FF1 and FF2Data opt: minimize the delay 

between FF1 and FF2 21
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Useful Skew Optimization 

Required time: 2+10 = 12
Arrival time: 2+11 = 13
Skew = 12 – 13 = -1 (late)

delay clock arrival by 2ns on purpose

be
fo

re
af

te
r

launch = 2ns

11ns

capture = 2ns

Required time: 4+10 = 14
Arrival time: 2+11 = 13
Skew = 14 – 13 = 1

capture = 4ns

Our target = 10ns
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Our Idea: 
• Pick a subset of end-points
• Modify their priorities on 

purpose
• Pass them to the 

subsequent skew optimizer

Our Timing Optimization Flow
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Transformer Architecture
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• One of the 3 main approaches in machine learning
– Key benefit: no data needed to learn from!
– Key drawback: slow..

Reinforcement Learning (RL)
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• Learn from neighbors
– Digital circuits are graphs, naturally
– SO, very popular in circuit design community 

Graph Neural Network (GNN)
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RL Strategy to Pick Endpoints
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Our Transformer Architecture
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Some Details

We avoid selecting endpoints that share 
too many common gates.

Initial node features
to be further optimized in our GNN
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Experimental Results

24% TNS improvement on average (64% max)
on 19 commercial designs

implemented using 5 – 12nm
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• ML-Powered VLSI Clock Routing: GAN
– Image-based feature extraction
– Outperformed commercial auto-setting

• ML-Powered Timing Optimization: RL + Transformer
– AI-based end-point selection
– Significant improvement on 19 commercial designs in 5nm to 12nm

• ML-Powered VLSI Circuit Placement: RL + Attention
– Attention-based knob tuning
– Outperformed multi-arm bandit & human expert

Conclusions



ML-Powered Circuit Placement
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• 12 placement parameters from Cadence Innovus
– 6 billions combinations 

Placement Parameters
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• RL agent learns in an interactive environment
– By trial and error
– Using feedback from its own actions and experiences

Reinforcement Learning
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• Goal: minimize half-perimeter wirelength (HPWL) after placement
• States

– Set of all netlists and all possible placement parameter settings
• Actions

– Set of actions that modifies the current parameters
• State transition

– The next state is the same netlist with updated parameters
• Reward

– HPWL improvement

Our RL Framework
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Our Actions and Reward

11
 ac

tio
ns

reward function
(saving over human design)

single action 
changes
multiple 
parameters
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• LSTM-based neural network
– Policy network: updates placement parameters
– Value network: predicts WL

Our Agent Architecture
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• Netlist metadata
– Metadata from netlist

• Topological features
– Extracted from netlist graph (directed)

20 Graph-Related Features
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• Our initial features (5): 
– gate type, degree, fanout, area, delay

32 GNN Features Using GraphSAGE

Input graph
A B

D C

E

F

node under
consideration
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• Use our policy network!
– Iteratively improve a random set using trained RL
– We stop if DO NOTHING is issued 3 times in a row 

How Do We Use Trained RL Agent?
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• TSMC 28nm 

• Diversity in netlists
– 13 without macros
– 2 with macros
– Macros are pre-placed manually

Experimental Setting
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• Training time
– ~100 hours doing 14,400 placements with Innovus (16 parallel runs)
– MAB: Nelder-Mead, Differential Evolution, Simulated Annealing, 

Genetic Algorithm, Particle Swarm

Training Results
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• Use our policy network!
– Iteratively improve a random set using trained RL
– We stop if DO NOTHING is issued 3 times in a row 

How Do We Use Trained RL Agent?
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What About After Routing?
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