
Machine Learning-Powered VLSI 
Physical Design Automation

Sung Kyu Lim
Georgia Tech / DARPA
EDPS 2023, Lunch Keynote Talk
10/5/2023



2/29

• ML-outside
– ML-Powered VLSI Clock Routing

• ML-inside
– ML-Powered Timing Optimization [DAC 2023 Best Paper Award]

• ML-inside
– ML-Powered VLSI Circuit Placement (if time permits)

Agenda



3/29

• Sea of knobs
– PPA and TAT depend heavily on how these are tuned

Machine Learning EDA: ML Outside

EDA tool knobs PPA and TAT

Human
vs
AI



4/29

• Physical design is harder and harder
– Can AI help them perform better (or fix problems)? 

Machine Learning EDA: ML Inside



ML-Powered Clock Routing



6/29
Two Clock Trees

knob value
Target skew 0.08ns
Max fanout 175
Max cap (trunk) 0.03pF
Max cap (leaf) 0.07pF
Target slew (trunk) 0.21ns
Target slew (leaf) 0.03ns
Target latency 0.2ns
eGR metal usage 1, 2, 3
Cell density 0.7

knob value
Target skew 0.13ns
Max fanout 195
Max cap (trunk) 0.04pF
Max cap (leaf) 0.10pF
Target slew (trunk) 0.23ns
Target slew (leaf) 0.26ns
Target latency 0.4ns
eGR metal usage 1, 2, 3, 4
Cell density 0.6

Clock tree 1 Clock tree 2



7/29
Very Different Results

Power: 21.8mW WL: 37.5mm
Skew: 0.15ps Latency: 0.55ps 

Power: 72.3mW WL: 76.4mm
Skew: 0.13ps Latency: 0.87ps 

tree 1 tree 2



8/29
ML-Powered Clock Routing

placement (FF in red)
clock tree qualities + 

best CTS parameter settings

CLK WL

CLK skew

CLK power

+

+

best setting
+



9/29

• GAN learns to generate new data with the same statistics as the training set
– Based on the "indirect" training through the discriminator
– Discriminator tells how "realistic" the “fake” data is produced by the generator
– Both the discriminator and generator improve through this competition

Generative Adversarial Network (GAN)

Ian Goodfellow (2014)



10/29

• Conditional GAN with placement-extracted features

Solution: Generative Adversarial Learning



11/29

• Useful In handling unseen netlist
– Better than # FFs, # gates, # nets, etc

Why Images?



12/29

• Produces “fake” CTS parameter sets

Our Generator



13/29

• Catches “fake” CTS parameter sets 

Our Discriminator



14/29

• Predicts CTS quality from CTS parameters

Regression Learning



15/29

• Use the generator!

How Do We Use Trained GAN?



16/29

• Fakes are of good quality
– In terms of power, WL, and skew
– Useful to expand the DB!

GAN-Generated Fake Clock Trees



17/29
GAN-optimized Clock Tree

88% fewer buffers
52% lower power
19% shorter WL
5% better skew

for

UNSEEN
netlist!!!

AES benchmark, TSMC 28nm, 1.1GHz clock



ML-Powered Timing Optimization



19/29
Concurrent Clock and Data Optimization

Improve both the clock and data path timing

FF1

FF2
Clock opt: minimize the skew 
between FF1 and FF2Data opt: minimize the delay 

between FF1 and FF2 21



20/29
Useful Skew Optimization 

Required time: 2+10 = 12
Arrival time: 2+11 = 13
Skew = 12 – 13 = -1 (late)

delay clock arrival by 2ns on purpose

be
fo

re
af

te
r

launch = 2ns

11ns

capture = 2ns

Required time: 4+10 = 14
Arrival time: 2+11 = 13
Skew = 14 – 13 = 1

capture = 4ns

Our target = 10ns



21/29

Our Idea: 
• Pick a subset of end-points
• Modify their priorities on 

purpose
• Pass them to the 

subsequent skew optimizer

Our Timing Optimization Flow



22/29
Transformer Architecture



23/29

• One of the 3 main approaches in machine learning
– Key benefit: no data needed to learn from!
– Key drawback: slow..

Reinforcement Learning (RL)



24/29

• Learn from neighbors
– Digital circuits are graphs, naturally
– SO, very popular in circuit design community 

Graph Neural Network (GNN)



25/29
RL Strategy to Pick Endpoints



26/29
Our Transformer Architecture



27/29
Some Details

We avoid selecting endpoints that share 
too many common gates.

Initial node features
to be further optimized in our GNN



28/29
Experimental Results

24% TNS improvement on average (64% max)
on 19 commercial designs

implemented using 5 – 12nm



29/29

• ML-Powered VLSI Clock Routing: GAN
– Image-based feature extraction
– Outperformed commercial auto-setting

• ML-Powered Timing Optimization: RL + Transformer
– AI-based end-point selection
– Significant improvement on 19 commercial designs in 5nm to 12nm

• ML-Powered VLSI Circuit Placement: RL + Attention
– Attention-based knob tuning
– Outperformed multi-arm bandit & human expert

Conclusions



ML-Powered Circuit Placement



31/29

• 12 placement parameters from Cadence Innovus
– 6 billions combinations 

Placement Parameters



32/29

• RL agent learns in an interactive environment
– By trial and error
– Using feedback from its own actions and experiences

Reinforcement Learning



33/29

• Goal: minimize half-perimeter wirelength (HPWL) after placement
• States

– Set of all netlists and all possible placement parameter settings
• Actions

– Set of actions that modifies the current parameters
• State transition

– The next state is the same netlist with updated parameters
• Reward

– HPWL improvement

Our RL Framework



34/29
Our Actions and Reward

11
 ac

tio
ns

reward function
(saving over human design)

single action 
changes
multiple 
parameters



35/29

• LSTM-based neural network
– Policy network: updates placement parameters
– Value network: predicts WL

Our Agent Architecture



36/29

• Netlist metadata
– Metadata from netlist

• Topological features
– Extracted from netlist graph (directed)

20 Graph-Related Features



37/29

• Our initial features (5): 
– gate type, degree, fanout, area, delay

32 GNN Features Using GraphSAGE

Input graph
A B

D C

E

F

node under
consideration



38/29

• Use our policy network!
– Iteratively improve a random set using trained RL
– We stop if DO NOTHING is issued 3 times in a row 

How Do We Use Trained RL Agent?



39/29

• TSMC 28nm 

• Diversity in netlists
– 13 without macros
– 2 with macros
– Macros are pre-placed manually

Experimental Setting



40/29

• Training time
– ~100 hours doing 14,400 placements with Innovus (16 parallel runs)
– MAB: Nelder-Mead, Differential Evolution, Simulated Annealing, 

Genetic Algorithm, Particle Swarm

Training Results



41/29

• Use our policy network!
– Iteratively improve a random set using trained RL
– We stop if DO NOTHING is issued 3 times in a row 

How Do We Use Trained RL Agent?



42/29
What About After Routing?


	Machine Learning-Powered VLSI Physical Design Automation
	Agenda
	Machine Learning EDA: ML Outside
	Machine Learning EDA: ML Inside
	ML-Powered Clock Routing
	Two Clock Trees
	Very Different Results
	ML-Powered Clock Routing
	Generative Adversarial Network (GAN)
	Solution: Generative Adversarial Learning
	Why Images?
	Our Generator
	Our Discriminator
	Regression Learning
	How Do We Use Trained GAN?
	GAN-Generated Fake Clock Trees
	GAN-optimized Clock Tree
	ML-Powered Timing Optimization
	Concurrent Clock and Data Optimization
	Useful Skew Optimization 
	Our Timing Optimization Flow
	Transformer Architecture
	Reinforcement Learning (RL)
	Graph Neural Network (GNN)
	RL Strategy to Pick Endpoints
	Our Transformer Architecture
	Some Details
	Experimental Results
	Conclusions
	ML-Powered Circuit Placement
	Placement Parameters
	Reinforcement Learning
	Our RL Framework
	Our Actions and Reward
	Our Agent Architecture
	20 Graph-Related Features
	32 GNN Features Using GraphSAGE
	How Do We Use Trained RL Agent?
	Experimental Setting
	Training Results
	How Do We Use Trained RL Agent?
	What About After Routing?

