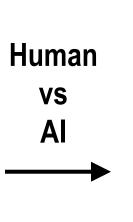
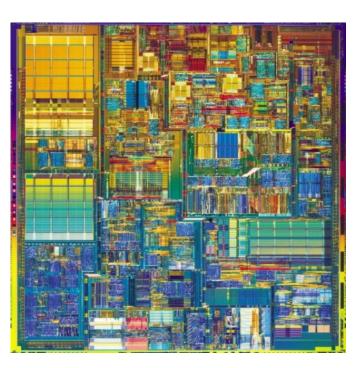

Machine Learning-Powered VLSI Physical Design Automation

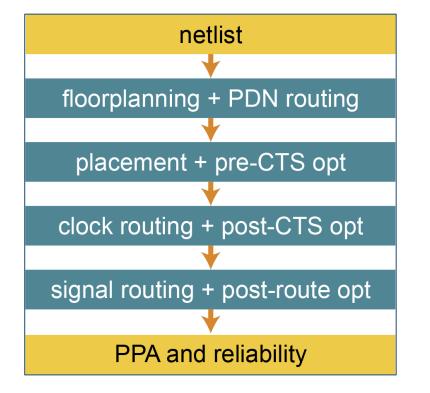
Sung Kyu Lim Georgia Tech / DARPA EDPS 2023, Lunch Keynote Talk 10/5/2023


Agenda


- ML-outside
 - ML-Powered VLSI Clock Routing
- ML-inside
 - ML-Powered Timing Optimization [DAC 2023 Best Paper Award]
- ML-inside
 - ML-Powered VLSI Circuit Placement (if time permits)

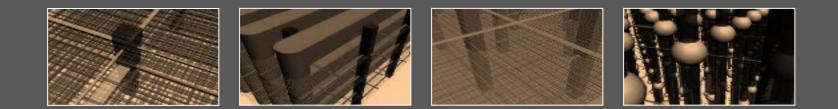
Machine Learning EDA: ML Outside

- Sea of knobs
 - PPA and TAT depend heavily on how these are tuned




PPA and TAT

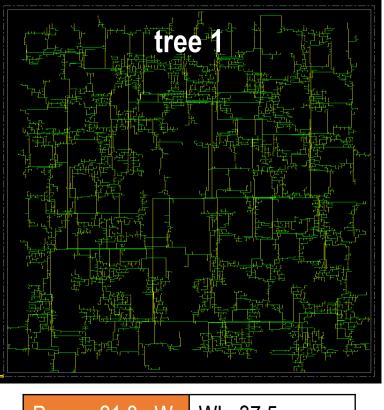
EDA tool knobs


Machine Learning EDA: ML Inside

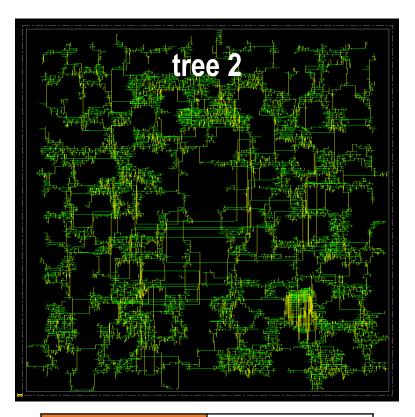
- Physical design is harder and harder
 - Can AI help them perform better (or fix problems)?

ML-Powered Clock Routing

Two Clock Trees

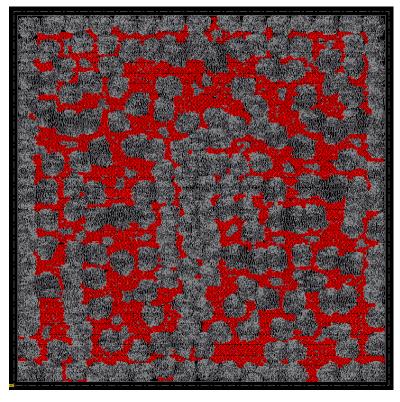

knob	value
Target skew	0.13ns
Max fanout	195
Max cap (trunk)	0.04pF
Max cap (leaf)	0.10pF
Target slew (trunk)	0.23ns
Target slew (leaf)	0.26ns
Target latency	0.4ns
eGR metal usage	1, 2, 3, 4
Cell density	0.6

knob value Target skew 0.08ns Max fanout 175 Max cap (trunk) 0.03pF Max cap (leaf) 0.07pF Target slew (trunk) 0.21ns Target slew (leaf) 0.03ns 0.2ns Target latency eGR metal usage 1, 2, 3 Cell density 0.7


Clock tree 1

Clock tree 2

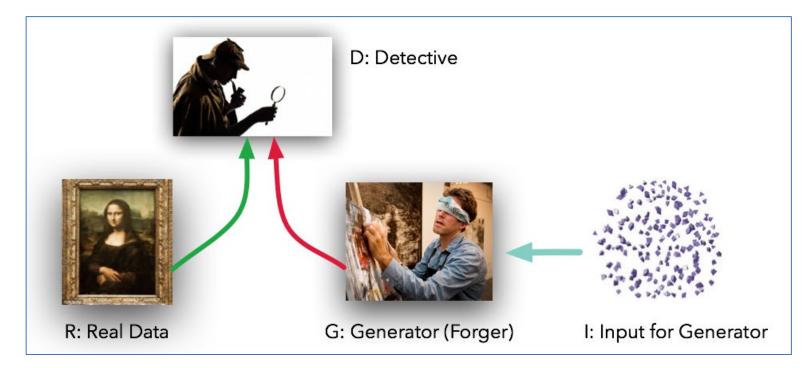
Very Different Results



Power: 21.8mW	WL: 37.5mm
Skew: 0.15ps	Latency: 0.55ps

Power: 72.3mW	WL: 76.4mm
Skew: 0.13ps	Latency: 0.87ps

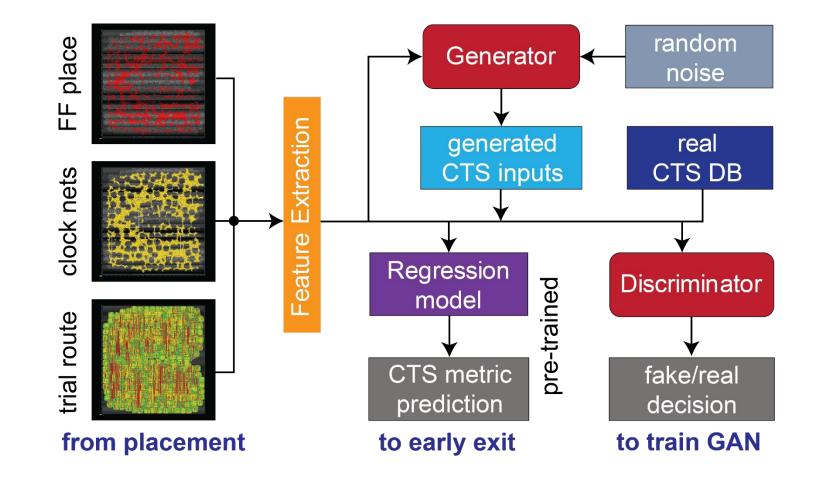
ML-Powered Clock Routing


placement (FF in red)

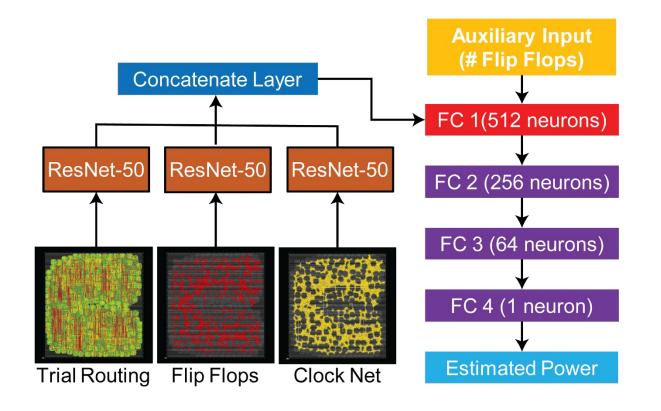
clock tree qualities + best CTS parameter settings

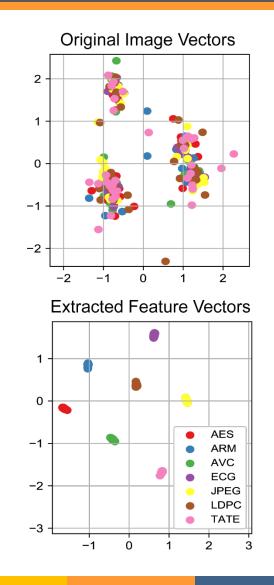
Generative Adversarial Network (GAN)

- GAN learns to generate new data with the same statistics as the training set
 - Based on the "indirect" training through the discriminator
 - Discriminator tells how "realistic" the "fake" data is produced by the generator
 - Both the discriminator and generator improve through this competition

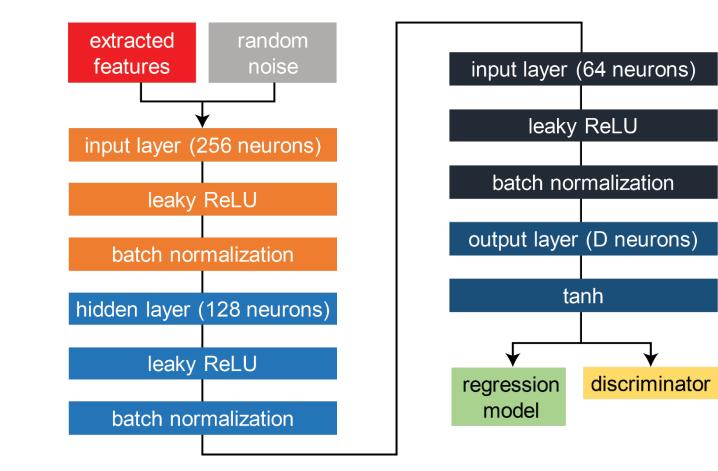


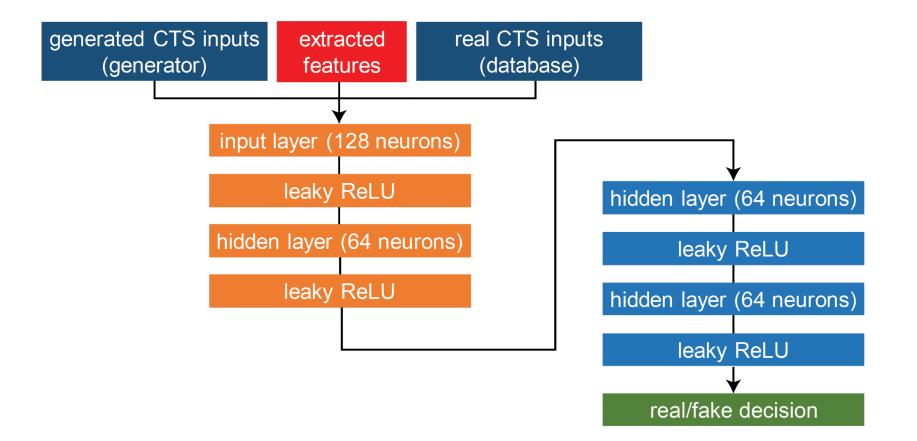
Ian Goodfellow (2014)


Solution: Generative Adversarial Learning

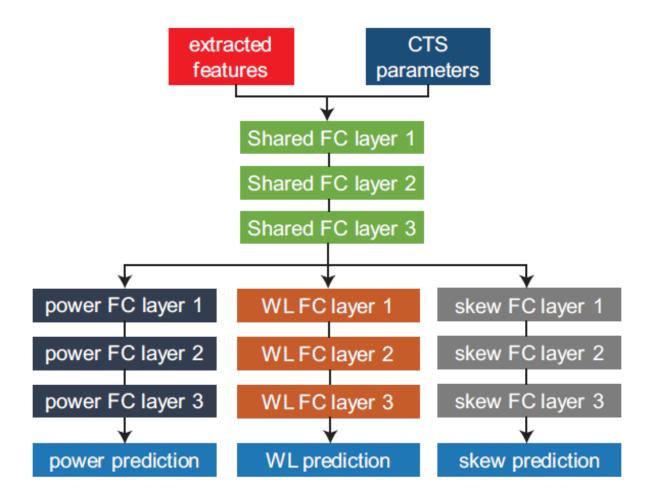

Conditional GAN with placement-extracted features

Why Images?

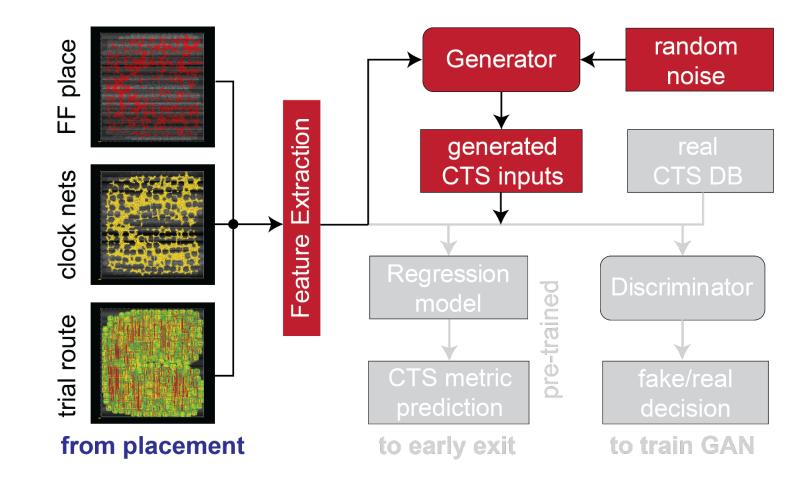

- Useful In handling unseen netlist
 - Better than # FFs, # gates, # nets, etc


Our Generator

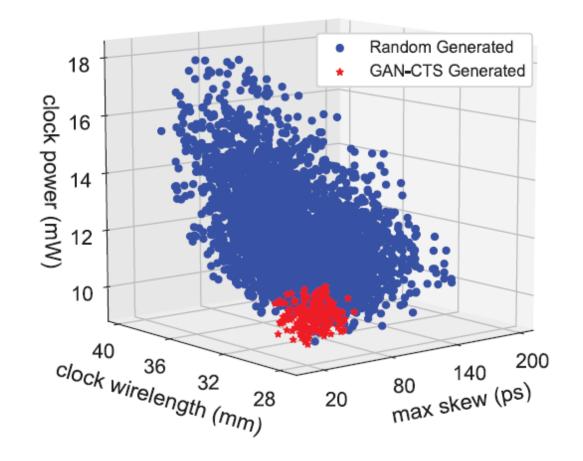
• Produces "fake" CTS parameter sets


Our Discriminator

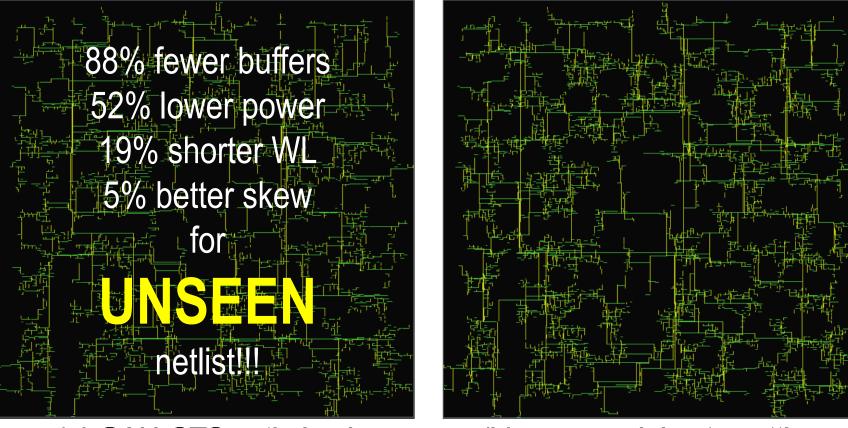
• Catches "fake" CTS parameter sets


Regression Learning

• Predicts CTS quality from CTS parameters

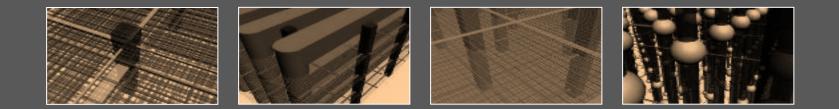

How Do We Use Trained GAN?

• Use the generator!

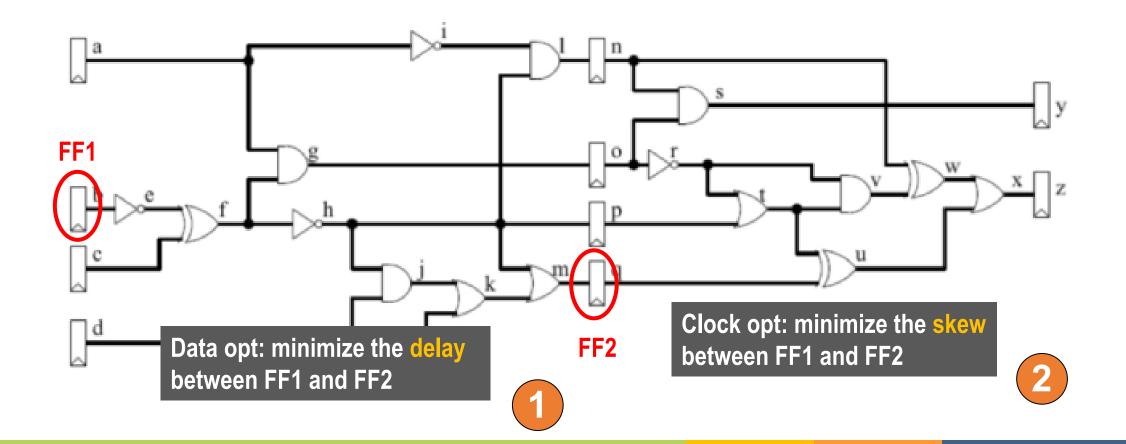


GAN-Generated Fake Clock Trees

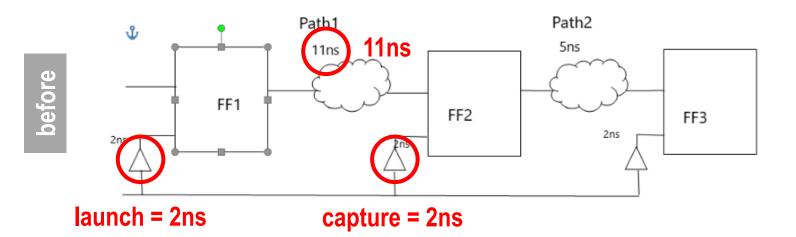
- Fakes are of good quality
 - In terms of power, WL, and skew
 - Useful to expand the DB!

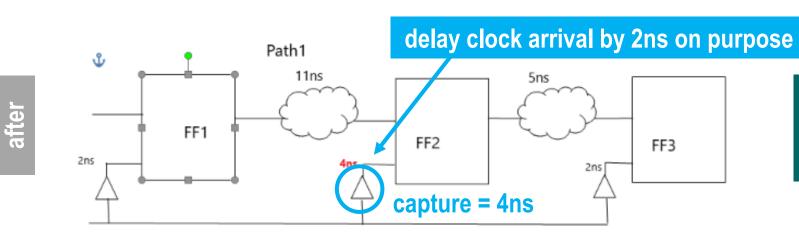


GAN-optimized Clock Tree


(a) GAN-CTS optimized (b) commercial auto-setting AES benchmark, TSMC 28nm, 1.1GHz clock

ML-Powered Timing Optimization


Concurrent Clock and Data Optimization

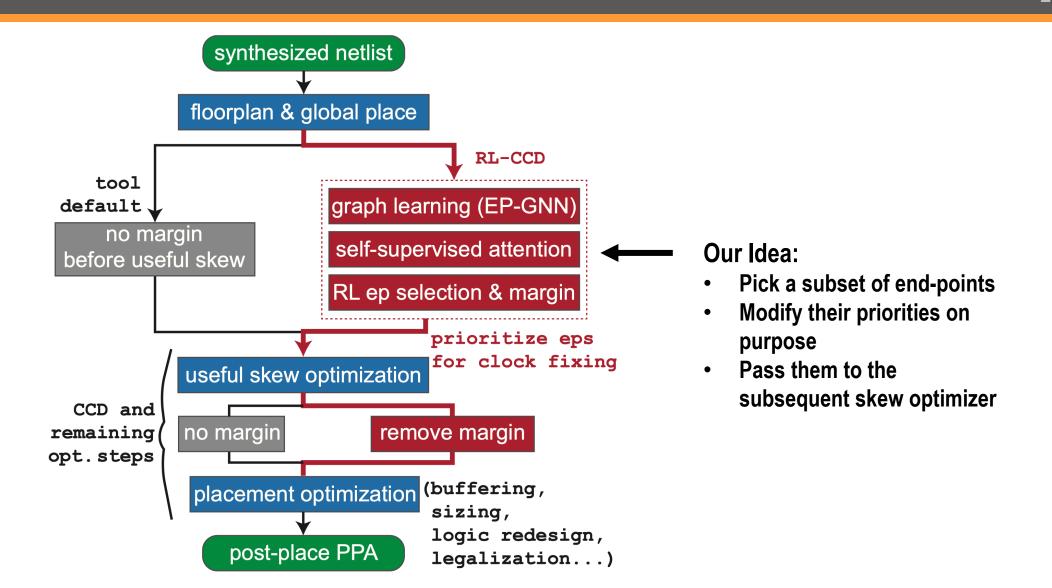

Improve both the clock and data path timing

Useful Skew Optimization

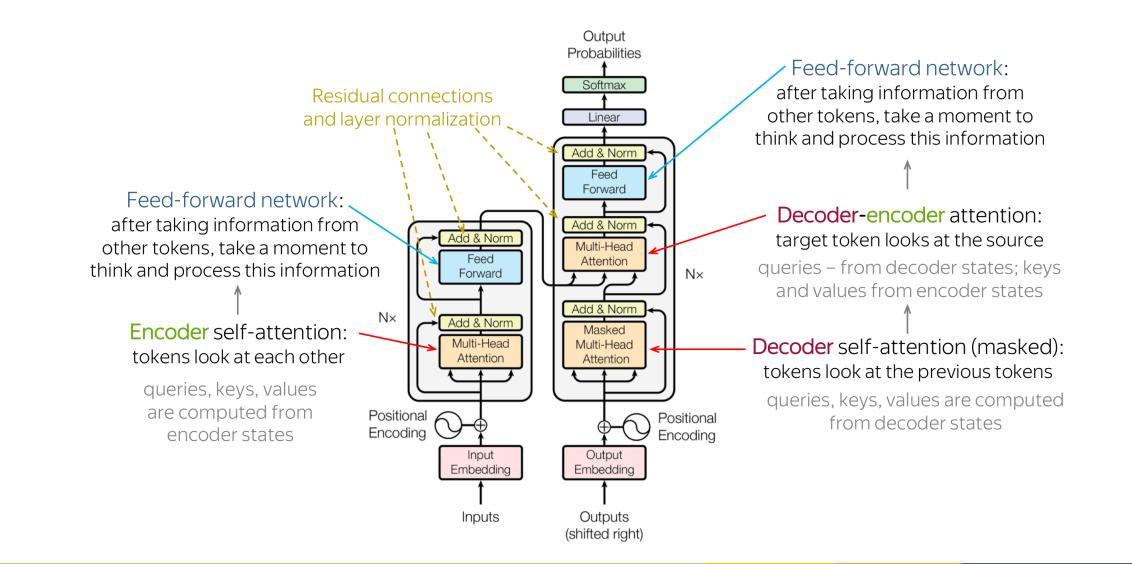
Our target = 10ns

Required time: 4+10 = 14 Arrival time: 2+11 = 13 Skew = 14 - 13 = 1

Required time: 2+10 = 12

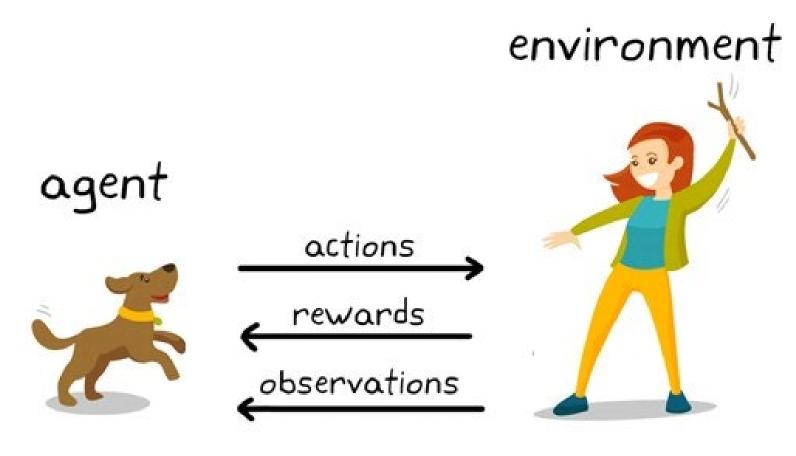

Skew = 12 – 13 = -1 (late)

Arrival time: 2+11 = 13

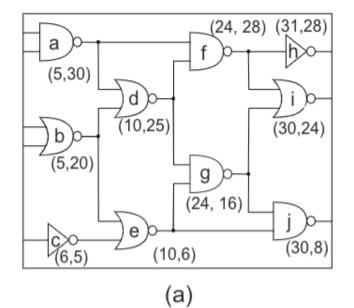


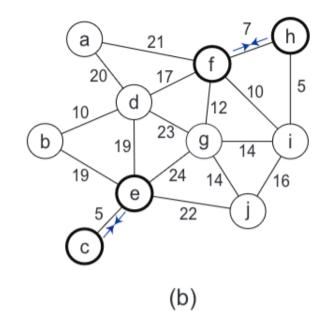
20/29

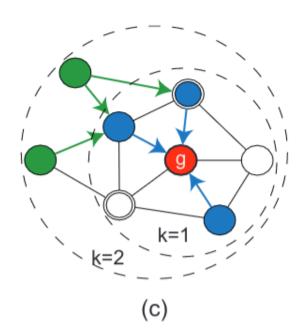
Our Timing Optimization Flow



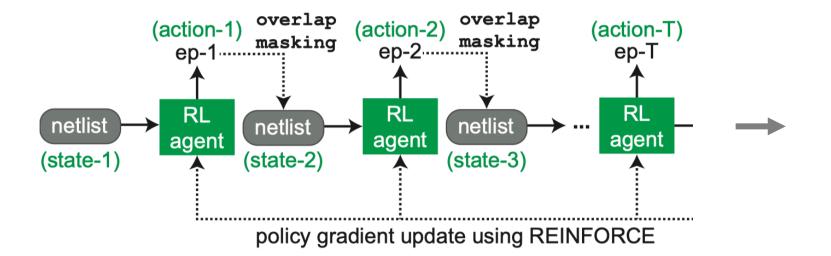
Transformer Architecture

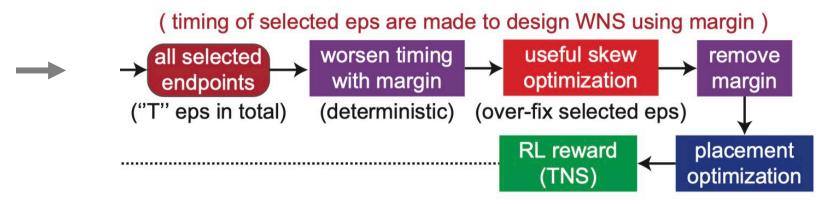

Reinforcement Learning (RL)

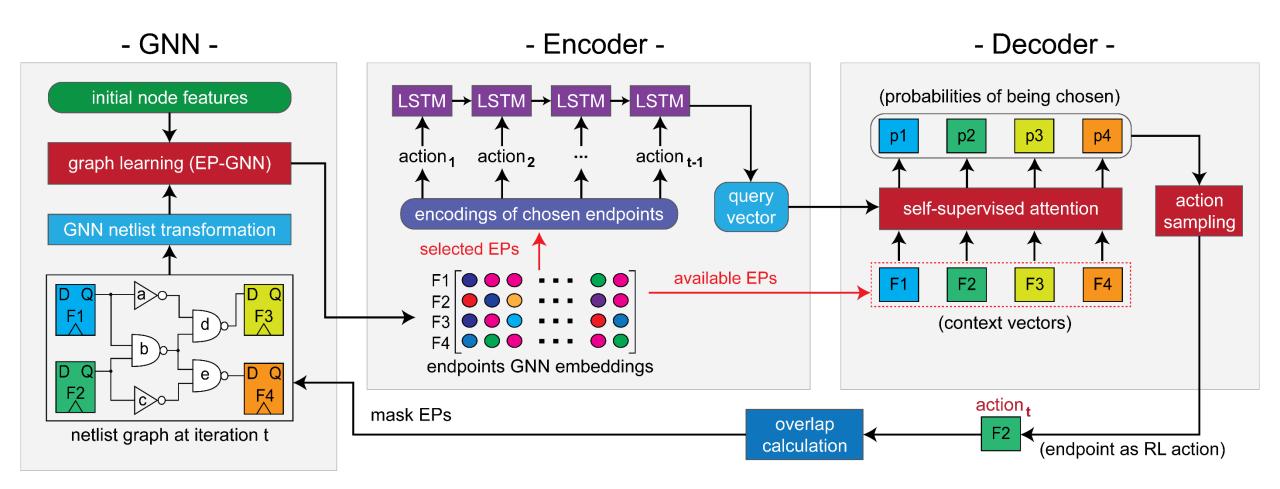

- One of the 3 main approaches in machine learning
 - Key benefit: no data needed to learn from!
 - Key drawback: slow..



Graph Neural Network (GNN)

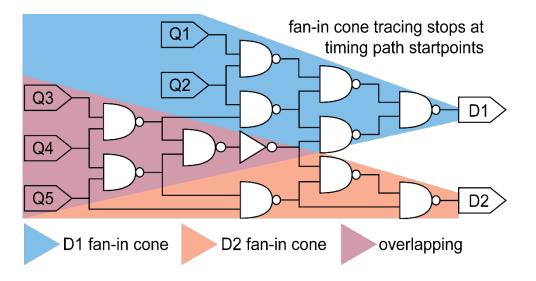

- Learn from neighbors
 - Digital circuits are graphs, naturally
 - SO, very popular in circuit design community




RL Strategy to Pick Endpoints

RL agent selects one endpoint (ep) at a time

Our Transformer Architecture



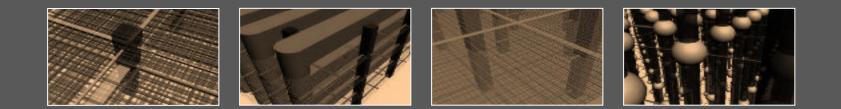
* Loop continues until all endpoints are either selected or masked

Some Details

name	# dim.	description
RL masked	1	is selected or masked by RL-CCD
locations	2	cell (x,y) location in global placement
outNet cap	1	output net capacitance
load cap	1	sum of driving load capacitance
cell cap	1	cell input capacitance
cell power	2	cell internal power and leakage power
net power	1	output net switching power
max toggle	1	maximum toggle rate at output pin
wst slack	1	worst slack of paths through cell
wst output slew	1	worst output transition
wst input slew	1	worst input transition

Initial node features to be further optimized in our GNN

We avoid selecting endpoints that share too many common gates.

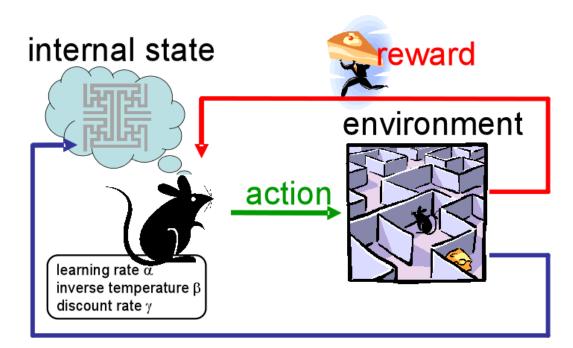

Experimental Results

decign	b	egin (post g	lobal pla	.ce)	default tool flow (16 threads)				RL-CCD	enhanced (ou	rs)			
design	WNS	TNS	#vio.	total	WNS	TNS	#vio.	total	run-	WNS	TNS	#vio.	total	run-
(# cells)	C MINN	1142	EPs	power	AN TAP	(goal)	EPs	power	time	CALMA	(goal)	EPs	power	time
block1 (577K)	-0.24	-2009.98	33785	482.92	-0.16	-97.2	4296	1114.33	1.00	-0.16	-84.0 (-14.1%)	3603	1116.48	16
block2 (1.3M)	-0.18	-1104.03	40091	761.41	-0.05	-2.93	540	764.13	1.00	-0.07	-2.56 (-12.6%)	443	763.98	36
block3 (353K)	-0.26	-2966.04	36265	468.06	-0.17	-149.28	4119	474.72	1.00	-0.18	-87.45 (-41.42%)	1942	473.80	29
block4 (370K)	-0.46	-4590.85	38943	297.19	-0.11	-20.78	1258	322.48	1.00	-0.12	-7.40 (-64.4%)	421	321.97	31
block5 (194K)	-0.27	-1165.33	9708	199.45	-0.14	-162.45	4271	205.50	1.00	-0.14	<u>-59.99 (-6</u> 3.1%)	2081	204.95	39
block6 (195K)	-0.30	-1382.51	8 21	0/ TNI	e imr	NAVAN	aant		road	1610	(mov) .03%)	1146	119.50	20
block7 (416K)	-0.34	-2108.89	14 24	70 I IN	2 mil	JIOVEII	ient	onave	eraye	; (047	% max) $\frac{103\%}{3.6\%}$	1009	134.35	21
block8 (135K)	-0.15	-1186.14	21		on	10 cor	nmai	rcial d	aeiau	ne	5.0%)	2314	349.56	42
block9 (162K)	-0.11	-50.90	1′								0.7%)	44	114.55	8
block10 (84K)	-0.43	-4428.41	29		impl	ement	ed u	sing 5	- 12	nm	7.6%)	3603	90.69	45
block11 (180K)	-0.29	-793.53	10							0.02		135	276.79	32
block12 (243K)	-0.32	-1720.92	18465	78.72	-0.19	-102.90	2223	27.83	1.00	-0.18	-79.9 (-22.4%)	1794	27.83	46
block13 (507K)	-0.12	-375.08	12987	63.48	-0.06	-39.37	3779	64.95	1.00	-0.06	-33.72 (-14.4%)	3291	64.80	10
block14 (816K)	-0.16	-1913.75	44044	333.60	-0.06	-51.43	4260	340.07	1.00	-0.06	-48.89 (-4.9%)	3915	340.00	7
block15 (821K)	-0.18	-331.51	11002	66.17	-0.11	-40.55	2116	66.72	1.00	-0.11	-37.78 (-6.83%)	1861	66.71	20
block16 (432K)	-0.18	-374.15	9228	27.18	-0.07	-32.24	2586	28.09	1.00	-0.05	-24.89 (-22.8%)	2149	28.09	16
block17 (507K)	-0.14	-226.09	8860	407.69	-0.07	-46.22	2472	412.26	1.00	-0.06	-33.05 (-28.5%)	2361	412.21	35
block18 (412K)	-0.41	-2787.22	51675	583.88	-0.10	-6.14	123	1183.46	1.00	-0.10	-5.81 (-5.4%)	124	1182.23	26
block19 (922K)	-0.16	-383.69	8009	98.66	-0.09	-19.01	667	218.38	1.00	-0.06	-13.71 (-27.9%)	626	218.33	47
· I	1								I		avg24%	avg19%	avg0.2%	

Conclusions

- ML-Powered VLSI Clock Routing: GAN
 - Image-based feature extraction
 - Outperformed commercial auto-setting
- ML-Powered Timing Optimization: RL + Transformer
 - Al-based end-point selection
 - Significant improvement on 19 commercial designs in 5nm to 12nm
- ML-Powered VLSI Circuit Placement: RL + Attention
 - Attention-based knob tuning
 - Outperformed multi-arm bandit & human expert

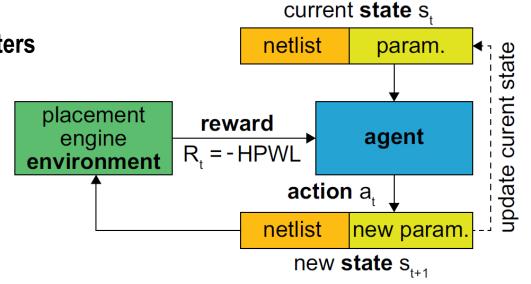
ML-Powered Circuit Placement


Placement Parameters

- 12 placement parameters from Cadence Innovus
 - 6 billions combinations

Name	Objective	Туре	Groups	# val
eco max distance	maximum distance allowed during place-	integer	detail	[0, 100]
	ment legalization			
legalization gap	minimum sites gap between instances	integer	detail	[0, 100]
max density	controls the maximum density of local bins	integer	global	[0, 100]
eco priority	instance priority for refine place	enum	detail	3
activity power driven	level of effort for activity power driven	enum	detail + effort	3
	placer			
wire length opt	optimizes wirelength by swapping cells	enum	detail + effort	3
blockage channel	creates placement blockages in narrow chan-	enum	global	3
	nels between macros			
timing effort	level of effort for timing driven placer	enum	global + effort	2
clock power driven	level of effort for clock power driven placer	enum	global + effort	3
congestion effort	the effort level for relieving congestion	enum	global + effort	3
clock gate aware	specifies that placement is aware of clock	bool	global	2
	gate cells in the design			
uniform density	enables even cell distribution	bool	global	2

Reinforcement Learning


- RL agent learns in an interactive environment
 - By trial and error
 - Using feedback from its own actions and experiences

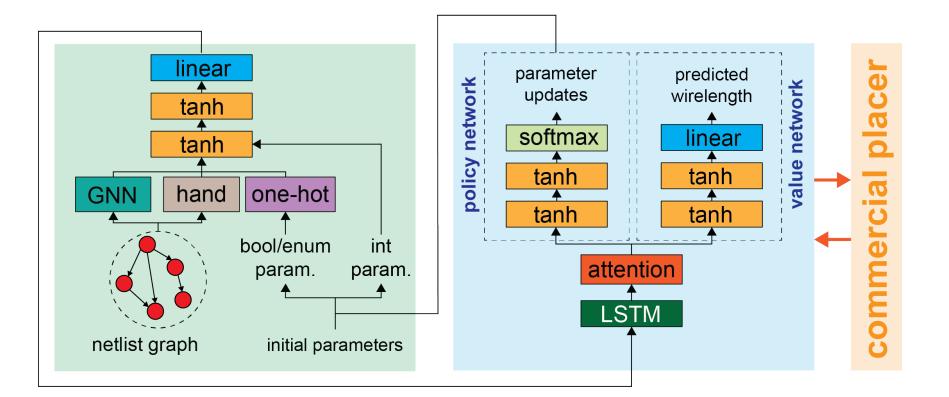
observation

- Goal: minimize half-perimeter wirelength (HPWL) after placement
- States
 - Set of all netlists and all possible placement parameter settings
- Actions
 - Set of actions that modifies the current parameters
- State transition
 - The next state is the same netlist with updated parameters
- Reward
 - HPWL improvement

Our RL Framework

Our Actions and Reward

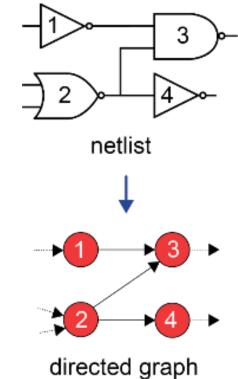
	1. FLIP Booleans
	2. UP Integers
	3. DOWN Integers
S	4. UP Efforts
U	5. DOWN Efforts
ţ	6. UP Detailed
actions	7. DOWN Detailed
7	8. UP Global (does not touch the bool)
	9. DOWN Global (does not touch the bool)
	10. INVERT-MIX timing vs. congestion vs. WL efforts
	11. DO NOTHING


single action changes multiple parameters

$$R_t := \frac{HPWL_{\text{Human Baseline}} - HPWL_t}{HPWL_{\text{Human Baseline}}}$$
reward function
(saving over human design)

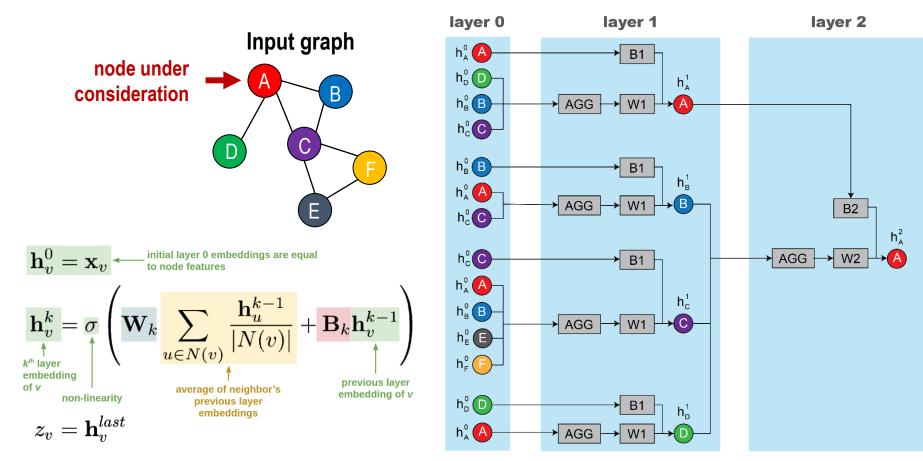
Name	Objective	Туре	Groups	# val
eco max distance	maximum distance allowed during placement legalization	integer	detail	[0, 100]
legalization gap	minimum sites gap between instances	integer	detail	[0, 100]
max density	controls the maximum density of local bins	integer	global	[0, 100]
eco priority	instance priority for refine place	enum	detail	3
activity power driven	level of effort for activity power driven placer	enum	detail + effort	3
wire length opt	optimizes wirelength by swapping cells	enum	detail + effort	3
blockage channel	creates placement blockages in narrow channels between macros	enum	global	3
timing effort	level of effort for timing driven placer	enum	global + effort	2
clock power driven	level of effort for clock power driven placer	enum	global + effort	3
congestion effort	the effort level for relieving congestion	enum	global + effort	3
clock gate aware	specifies that placement is aware of clock gate cells in the design	bool	global	2
uniform density	enables even cell distribution	bool	global	2

Our Agent Architecture

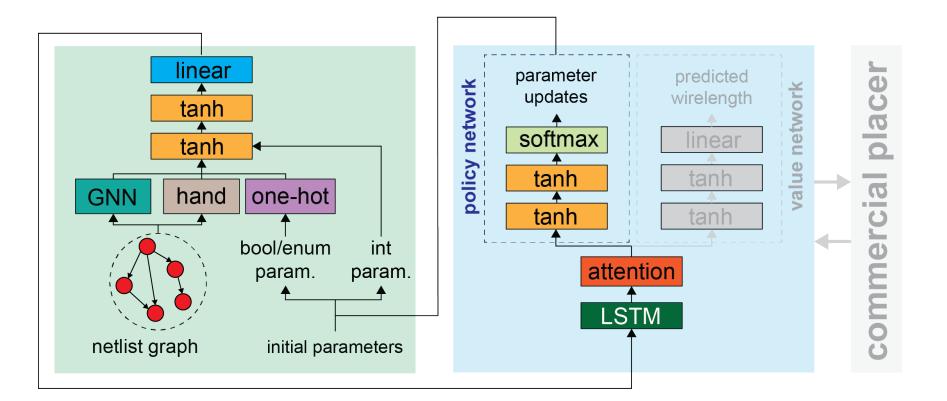

- LSTM-based neural network
 - Policy network: updates placement parameters
 - Value network: predicts WL

20 Graph-Related Features

- Netlist metadata
 - Metadata from netlist
- Topological features
 - Extracted from netlist graph (directed)


Metadata (10)		Topological	(10)
Name	Туре	Name	Туре
# cells	integer	average degree	float
# nets	integer	average fanout	float
# cell pins	integer	largest SCC	integer
# IO	integer	max. clique	integer
# nets w. fanout \in]5, 10[integer	chromatic nb.	integer
# nets w. fanout ≥ 10	integer	max. logic level	integer
# FFs	integer	RCC	float
total cell area (um^2)	integer	\overline{CC}	float
# hardmacros	integer	Fiedler value	float
macro area (<i>um</i> ²)	integer	spectral radius	float

representation


32 GNN Features Using GraphSAGE

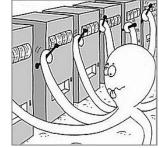
- Our initial features (5):
 - gate type, degree, fanout, area, delay

How Do We Use Trained RL Agent?

- Use our policy network!
 - Iteratively improve a random set using trained RL
 - We stop if DO NOTHING is issued 3 times in a row

Experimental Setting

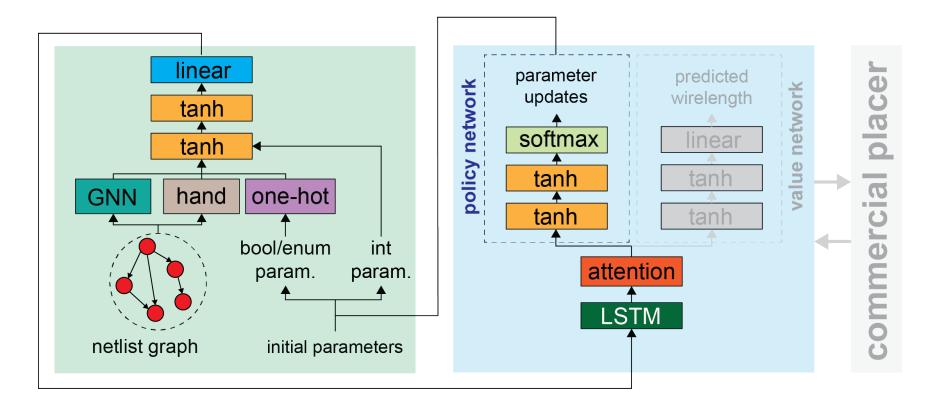
- TSMC 28nm
- Diversity in netlists
 - 13 without macros
 - 2 with macros
 - Macros are pre-placed manually

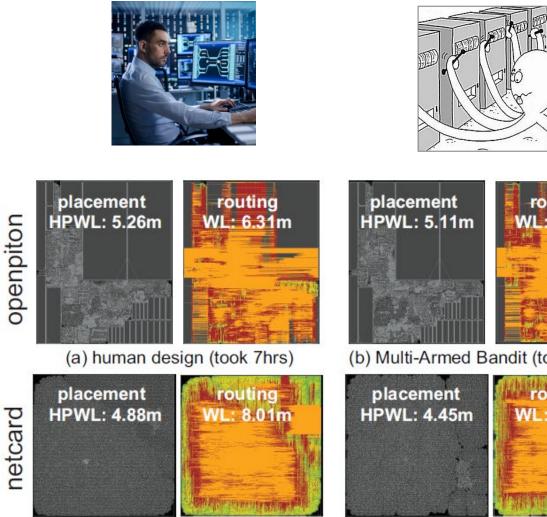

Name	#cells	#nets	#IO	RCC ₃	LL	Sp. R.	RT
		trai	ning s	et			
PCI	1.2K	1.4K	361	510	17	25.6	0.5
DMA	10K	11K	959	65	25	26.4	1
B19	33K	34K	47	19	86	36.1	2
DES	47K	48K	370	14	16	25.6	2
VGA	52K	52K	184	15	25	26.5	3
ECG	83K	84K	1.7K	7.5	23	26.8	4
Rocket	92K	95K	377	8.1	42	514.0	6
AES	112K	112K	390	5.8	14	102.0	6
Nova	153K	155K	174	4.6	57	11,298	9
Tate	187K	188K	1.9K	3.2	21	25.9	10
JPEG	239K	267K	67	2.8	30	287.0	12

test set (unseen netlist)									
LDPC	39K	41K	4.1K	18	19	328.0	2		
OpenPiton	188K	196K	1.6K	3.9	76	3940	19		
Netcard	300K	301K	1.8K	2.9	32	27.3	24		
Leon3	326K	327K	333	2.4	44	29.5	26		

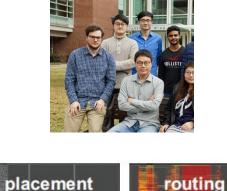
- Training Results
- Training time
 - ~100 hours doing 14,400 placements with Innovus (16 parallel runs)
 - MAB: Nelder-Mead, Differential Evolution, Simulated Annealing, Genetic Algorithm, Particle Swarm

Netlist	human	MAB [1]	(Δ%)	RL	(Δ%)
PCI	0.010	0.0092	(-8.0%)	0.0092	(-8.0%)
DMA	0.149	0.139	(-6.7%)	0.135	(-9.4%)
B19	0.30	0.28	(-6.7%)	0.28	(-6.7%)
DES	0.42	0.37	(-11.9%)	0.36	(-14.3%)
VGA	1.52	1.40	(-7.9%)	1.41	(-7.2%)
ECG	0.72	0.65	(-9.7%)	0.68	(-5.5%)
Rocket	1.33	1.27	(-4.5%)	1.20	(-9.8%)
AES	1.49	1.44	(-2.7%)	1.40	(-6.0%)
AVC-Nova	1.59	1.49	(-6.3%)	1.46	(-8.2%)
Tate	1.53	1.42	(-7.2%)	1.45	(-5.2%)
JPEG	2.14	1.96	(-8.4%)	1.88	(-12.2%)

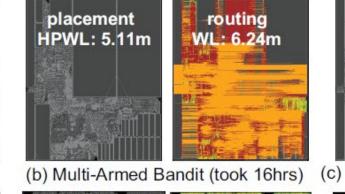


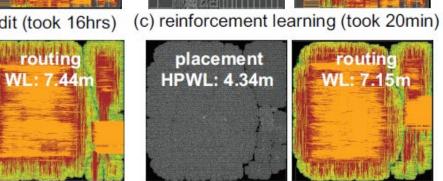


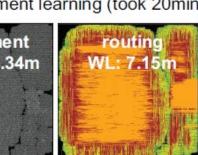
How Do We Use Trained RL Agent?


- Use our policy network!
 - Iteratively improve a random set using trained RL
 - We stop if DO NOTHING is issued 3 times in a row

What About After Routing?




(a) human design (took 8hrs)



HPWL: 4.99m

42/29

WL: 6.10m

(b) Multi-Armed Bandit (took 20hrs) (c) reinforcement learning (took 25min)