Machine Learning-Powered VLSI
Physical Design Automation

- ! . < -_-:"---- -_ =1 - {f
Ser o NS =
-] .. i > r
S Y T e g e
S SRS e o 4 B
g B gl 1w, Fa

Sung Kyu Lim

Georgia Tech / DARPA

EDPS 2023, Lunch Keynote Talk
10/5/2023

* ML-outside
— ML-Powered VLSI Clock Routing

* ML-inside
— ML-Powered Timing Optimization [DAC 2023 Best Paper Award]

« ML-inside

— ML-Powered VLSI Circuit Placement (if time permits)

Machine Learning EDA: ML Outside

« Sea of knobs
— PPA and TAT depend heavily on how these are tuned

; i

j
i |

J I
-

b L S

PPA and TAT

Machine Learning EDA: ML Inside

 Physical design is harder and harder
— Can Al help them perform better (or fix problems)?

netlist

A 4

floorplanning + PDN routing

placement + pre-CTS opt

clock routing + post-CTS opt
signal routing + post-route opt

PPA and reliability

ML-Powered Clock Routing

Two Clock Trees

Target skew 0.13ns Target skew 0.08ns
Max fanout 195 Max fanout 175
Max cap (trunk) 0.04pF Max cap (trunk) 0.03pF
Max cap (leaf) 0.10pF Max cap (leaf) 0.07pF
Target slew (trunk) 0.23ns Target slew (trunk) 0.21ns
Target slew (leaf) 0.26ns Target slew (leaf) 0.03ns
Target latency 0.4ns Target latency 0.2ns
eGR metal usage 1,2,3,4 eGR metal usage 1,2, 3
Cell density 0.6 Cell density 0.7

Clock tree 1 Clock tree 2

Very Different Results

WL: 37.5mm WL: 76.4mm
Latency: 0.55ps Latency: 0.87ps

ML-Powered Clock Routing

CLK WL

CLK skew

CLK power

I+ I+I+I

best setting

clock tree qualities +
placement (FF in red) best CTS parameter settings

Generative Adversarial Network (GAN)

* GAN learns to generate new data with the same statistics as the training set
— Based on the "indirect" training through the discriminator
— Discriminator tells how "realistic” the “fake” data is produced by the generator
— Both the discriminator and generator improve through this competition

D: Detective

R: Real Data G: Generator (Forger) I: Input for Generator lan Goodfellow (2014)

Solution: Generative Adversarial Learning

 Conditional GAN with placement-extracted features

random

e Generator .
noise

FF place

generated
CTS inputs

clock nets

Regression
model

Discriminator

CTS metric fake/real
prediction decision

from placement to early exit to train GAN

Feature Extraction

trial route
pre-trained

Why Images?

 Useful In handling unseen netlist Original Image Vectors
— Better than # FFs, # gates, # nets, etc “ ; i
NI 52.‘

dg‘zn_ . .p‘.
3

Concatenate Layer -1
g FC 1(512 neurons) 27

-2 - 0 1 2

ResNet-50 @l ResNet-50 @ ResNet-50 EEBlobt lnouons) Extracted Feiture Vectors
"Te
FC 3 (64 neurons) ®
0 -
e
FC 4 (1 neuron) ~11 e AR
® AvVC
Trial Routing Flip Flops Clock Net Estimated Power ® LDPC
_3 -

Our Generator

* Produces “fake” CTS parameter sets

extracted
features input layer (64 neurons)
|

leaky RelLU

input layer (256 neurons)

batch normalization
leaky RelL U

output layer (D neurons)

batch normalization

hidden layer (128 neurons)

leaky RelU v v
regression discriminator
model

batch normalization

Our Discriminator

« (Catches “fake” CTS parameter sets

generated CTS inputs extracted real CTS inputs
(generator) features (database)

Y
input layer (128 neurons)

leaky RelLU hidden layer (64 neurons)

hidden layer (64 neurons) leaky RelLU

leaky RelLU hidden layer (64 neurons)

leaky RelL U

real/fake decision

Regression Learning

 Predicts CTS quality from CTS parameters

extracted CTS
features parameters

Shared FC layer 1

Shared FC layer 2
Shared FC layer 3

power FC layer 1 WL FC layer 1 skew FC layer 1

power FC layer 2 WL FC layer 2 skew FC layer 2

power FC layer 3 WLFC layer 3

skew FC layer 3

power prediction

WL prediction skew prediction

How Do We Use Trained GAN?

 Use the generator!

o)
S mmwa enerator
a
L
L c
-% generated
2] © CTS inputs
o b
v LLI
X
S o
O =
©
It [J
2
-
o)
| -
©
| -
-

from placement

GAN-Generated Fake Clock Trees

 Fakes are of good quality
— In terms of power, WL, and skew

— Useful to expand the DB! { * Random Generated
GAN-CTS Generated

—
00
%
1 X
A
°
| 3

—
(o)

(MW) Jamod »20[0
RS

10]

GAN-optimized Clock Tree

17129

Sl 88% fe fer buﬂfeﬂs B
“52% Iqwer power -
19% shorte rWL
5% better §kew

fOF\ = ‘ :

\ UNSEEN

| ’ \ r{etllst'ﬂ : \

] il L = S
(a) GAN-CTS optimized (b) commercial auto-setting
AES benchmark, TSMC 28nm, 1.1GHz clock

ML-Powered Timing Optimization

Concurrent Clock and Data Optimization

Improve both the clock and data path timing

Data opt: minimize the delay between |:|:1 and FF2
between FF1 and FF2 o

Useful Skew Optimization

Our target = 10ns

2ns §

Required time: 2+10 =12
Arrival time: 2+11 =13
Skew =12 -13 = -1 (late)

Required time: 4+10 =14
Arrival time: 2+11 =13
Skew=14-13=1

Our Timing Optimization Flow

synthesized netlist

floorplan & global place

tool

default graph learning (EP-GNN)

no margin ;) . K
before useful skew self-supervised attention | G Our Idea:

RL ep selection & margin * Pick a subset of end-points

.. * Modify their priorities on
prioritize eps purpose

for clock fixing « Pass them to the
subsequent skew optimizer

useful skew optimization

CCD and
remaining([alelgF=lge]ly - remove margin
opt. steps

JEIE TRl lrile)y] (Puffering,
sizing,

logic redesign,
legalization...)

post-place PPA

Transformer Architecture

Output
Probabilities
. :
Residual connections
and layer normalizatjon _
\ \\ \\ S qr ~N
\ \
1 \ N Feed 4
‘\ \ N Forward
Feed-forward network: S .
L .) \ \
after taking information from (o)
orm -
other tokens, take a moment to \’_\j—-—] Multi-Head | .47
. . . \ Feed Attention
think and process this information | Forward) Nx
\
I +—
Nix \ Add & Norm
~ . . ~>{_Add & Norm] Esiea
Encoder self-attention: —_|[" === il
tokens look at each other Attention Attention
: t t
queries, keys, values N ——) L —)
are computed from Positional 5 Positional
encoder states Encoding & Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Feed-forward network:
after taking information from
other tokens, take a moment to
think and process this information

I

Decoder-encoder attention:
Add & Norm / .

target token looks at the source

queries - from decoder states; keys
and values from encoder states

I

Decoder self-attention (masked):
tokens look at the previous tokens

queries, keys, values are computed
from decoder states

Reinforcement Learning (RL)

 One of the 3 main approaches in machine learning
— Key benefit: no data needed to learn from!
— Key drawback: slow..

environment

agent

\f;

actions
ﬂ

rewords

b

observations

P s

Graph Neural Network (GNN)

 Learn from neighbors
— Digital circuits are graphs, naturally
— SO, very popular in circuit design community

:@ ﬂfﬂ} (31,28)
—) e

(5,20)
(24, 16)
o ,
6,5) (10,6) (30,8)

RL Strategy to Pick Endpoints

(action-1) ;Z:;i:g (action-2) °veriap (action-T)

v
netlist m—b a —)

(state-2)

policy gradient update using REINFORCE

RL agent selects one endpoint (ep) at a time

(timing of selected eps are made to design WNS using margin)

all selected worsen timing useful skew remove
endpoints with margin optimization margin

("T” eps in total) (deterministic) (over-fix selected eps)

... RL reward placement
(TNS) optimization

—

Our Transformer Architecture

- GNN -

initial node features

graph learning (EP-GNN)

GNN netlist transformation

<_

FloOo0® - @@ available EPs
FPO@O = @@

— 3000 - @@ (context vectors)
M OO® = @O

netlist graph at iteration t

- Encoder - - Decoder -

(probabilities of being chosen)

p3

action, action, action ¢4

. _ query : : action
encodings of chosen endpoints vector seli-supervised attention sampling

selected EPs

endpoints GNN embeddings
action

mask EPs overlap ‘
calculation (endpoint as RL action)

* Loop continues until all endpoints are either selected or masked

Some Details

name # dim. | description _ _
RL masked 1 is selected or masked by RL-CCD @—L fan-in cone tracing stops at
locations 2 cell (x,y) location in global placement h timing path startpoints
outNet cap | output net capacitance @_[—
load cap | sum of driving load capacitance Q3 } E
cell cap | cell input capacitance ||
cell power 2 cell internal power and leakage power Q4 :D07>O__
net power | output net switching power _>—|_D07
max toggle 1 maximum toggle rate at output pin [
wst slack | worst slack of paths through cell & Do_ @
wst output slew | worst output transition D1 fan-in cone D2 fan-in cone overlapping
wst input slew | worst input transition
Initial node features We avoid selecting endpoints that share

to be further optimized in our GNN too many common gates.

Experimental Results

24% TNS improvement on average (64% max)
on 19 commercial designs
implemented using 5 - 12nm

Conclusions

* ML-Powered VLSI Clock Routing: GAN

— Image-based feature extraction
— Outperformed commercial auto-setting

* ML-Powered Timing Optimization: RL + Transformer
— Al-based end-point selection
— Significant improvement on 19 commercial designs in 5nm to 12nm

« ML-Powered VLSI Circuit Placement: RL + Attention

— Attention-based knob tuning
— Outperformed multi-arm bandit & human expert

ML-Powered Circuit Placement

Placement Parameters

12 placement parameters from Cadence Innovus
— 6 billions combinations

Name Objective Type Groups # val
eco max distance maximum distance allowed during place- | integer detail [0, 100]
ment legalization
legalization gap minimum sites gap between instances integer detail [0, 100]
max density controls the maximum density of local bins | integer global [0, 100]
eco priority instance priority for refine place enum detail 3
activity power driven || level of effort for activity power driven | enum | detail + effort 3
placer
wire length opt optimizes wirelength by swapping cells enum | detail + effort 3
blockage channel creates placement blockages in narrow chan- | enum global 3
nels between macros
timing effort level of effort for timing driven placer enum | global + effort 2
clock power driven || level of effort for clock power driven placer | enum | global + effort 3
congestion effort the effort level for relieving congestion enum | global + effort 3
clock gate aware specifies that placement is aware of clock | bool global 2
gate cells in the design
uniform density enables even cell distribution bool global 2

Reinforcement Learning

* RL agent learns in an interactive environment
— By trial and error
— Using feedback from its own actions and experiences

internal state “XNreward

X

environment

learning rate o
inverse temperature 3
discount rate v

observation

Our RL Framework

 Goal: minimize half-perimeter wirelength (HPWL) after placement

action a,

 States
— Set of all netlists and all possible placement parameter settings
* Actions
— Set of actions that modifies the current parameters
+ State transition current state s,
— The next state is the same netlist with updated parameters netlist param. «- @
1 ©
+ Reward o
 C
— HPWL improvement reward 2
R, =-HPWL 5
5
=1

netlist |new param.;--
new state s,

Our Actions and Reward

1. FLIP Booleans
2. UP Integers
o | 3 opptots B single action R, = HPW Lyjyman Baseline = HPW Ly
S | 5 DOWN Efforts changes HPW Lyyman Baseline
'-13 6. UP Detailed . .
@ | 7. DOWN Detailed multiple reward function
<~ | 8. UP Global (does not touch the bool : :
" | 9. DOWN Gl(f)bal (does not touch the)bool) parameters (SﬂVlng over human deSIQn)
10. INVERT-MIX timing vs. congestion vs. WL efforts
11. DO NOTHING
| Name || Objective | Type ‘ Groups ‘ # val ‘
eco max distance maximum distance allowed during placement legalization integer detail [0, 100]
legalization gap minimum sites gap between instances integer detail [0, 100]
max density controls the maximum density of local bins integer global [0, 100]
eco priority instance priority for refine place enum detail 3
activity power driven || level of effort for activity power driven placer enum | detail + effort 3
wire length opt optimizes wirelength by swapping cells enum | detail + effort 3
blockage channel creates placement blockages in narrow channels between macros | enum global 3
timing effort level of effort for timing driven placer enum | global + effort 2
clock power driven || level of effort for clock power driven placer enum | global + effort 3
congestion effort the effort level for relieving congestion enum | global + effort 3
clock gate aware specifies that placement is aware of clock gate cells in the design | bool global 2
uniform density enables even cell distribution bool global 2

Our Agent Architecture

« LSTM-based neural network
— Policy network: updates placement parameters
— Value network: predicts WL

| I________‘

————————————————————————

— « | parameter | predicted |

- o) | X

tanh g | updates | wirelength ! g
| 4 X l
4 |

Gnh © [softmax| (igam

s > + : o

: é’ [tanh I tanh | = —’

hand 8.: A | 7y | S

| tanh | tanh |

. @_ . boollenum int s T 1 SRR S <+
/ | param. param.
\ / 4 4

netlist graph initial parameters

20 Graph-Related Features

* Netlist metadata
— Metadata from netlist

« Topological features —l>°* 3 P
J2>

— Extracted from netlist graph (directed)

Metadata (10) Topological (10)
Name Type Name Type netlist
cells integer || average degree | float
nets integer || average fanout | float ¢
cell pins integer largest SCC | integer
10 integer max. clique integer | - >o >

nets w. fanout €]5, 10[| integer || chromatic nb. | integer
nets w. fanout > 10 | integer || max. logic level | integer

FFs integer RCC float i
total cell area (um?) integer cc float .
hardmacros integer Fiedler value float directed graph

representation

macro area (um?) integer || spectral radius | float

32 GNN Features Using GraphSAGE

* Our initial features (5):
— gate type, degree, fanout, area, delay

layer O layer 1 layer 2
Input graph
node under
consideration E e IREe
h
0 h
hA) 4
. AGG [W1 B2
hc
hi
hg — XU itzitljildlgyfr:;t(ilin;beddings are equal h AGG H W2
ho
hk-1 h
h* =0 | W v 4 BihF! AGG - wi
f 2 NG :
k™ layer T hg
embedding f . I
o non-linearity aver’;’irgeiit;fugeligyehror’s ep;‘i‘gggﬁ‘gazﬂ/
last embeddings
zy = hy, hi@—ﬂ AGG H Wi

How Do We Use Trained RL Agent?

* Use our policy network!

— lteratively improve a random set using trained RL
— We stop if DO NOTHING is issued 3 times in a row

RS

— v i parameter i
S | updates |

nh Q. 1

ta+ -E | A |

+ > | LY [

: 2 | tanh |
hand 9 L |

| tanh |

“@_ . boollenum int
/ | param. param.
\ / 4 4

netlist graph initial parameters

Experimental Setting

’ TSMC 28nm Name #cells | #nets | #I0 | RCC3 | LL | Sp.R. | RT
training set

_ o _ PCI 1.2K | 14K | 361 | 510 | 17| 256 | 05

* Diversity in netlists DMA || 10K | 11K | 959 | 65 |25 | 264 | 1
. B19 33K | 34K | 47 19 |8 | 361 | 2

- 13 without macros DES 47K | 48K | 370 | 14 | 16| 256 | 2

— 2 with macros VGA 52K | 52K | 184 | 15 | 25| 265 | 3

ECG 83K | 84K | 17K | 75 | 23| 268 | 4

— Macros are pre-placed manually Rocket || 92K | 95K | 377 | 81 |42 5140 | 6

AES 112K | 112K | 390 | 5.8 | 14| 1020 | 6

Nova 153K | 155K | 174 | 46 |57 | 11,298 | 9

Tate 187K | 188K | 19K | 3.2 | 21| 259 | 10

JPEG 239K | 267K | 67 | 2.8 | 30| 287.0 | 12

test set (unseen netlist)

LDPC 39K | 41K | 41K | 18 | 19| 3280 | 2

OpenPiton || 188K | 196K | 1.6K | 3.9 | 76 | 3940 | 19

Netcard || 300K | 301K | 1.8K | 29 |32 | 273 | 24

Leon3 326K | 327K | 333 | 24 |44 | 295 | 26

Training Results

* Training time

— ~100 hours doing 14,400 placements with Innovus (16 parallel runs)

— MAB: Nelder-Mead, Differential Evolution, Simulated Annealing,
Genetic Algorithm, Particle Swarm

Netlist || human | MAB [1] (A%) RL (A%)
PCI 0.010 [0.0092 (—8.0%) | 0.0092 (—8.0%)
DMA 0.149 0.139 (-6.7%) | 0.135 (XN
B19 0.30 0.28 (—6.7%) 0.28 (—6.7%)
DES 0.42 0.37 (-11.9%) | 0.36 [ESTRR
VGA 1.52 0] (—7.9%) 141 (-7.2%)
ECG 0.72 0.65 EENEA 0.68 (—5.5%)
Rocket 1.33 1.27 (—4.5%) WA (—9.8%)
AES 1.49 1.44 (-2.7%) 1.40 [EA}A)
AVC-Nova 1.59 149 (—6.3%) Ry (—8.2%)
Tate 1.53 12 [EERN 145 (-5.2%)
JPEG 2.14 1.96 (—8.4%) L (—12.2%)

How Do We Use Trained RL Agent?

* Use our policy network!

— lteratively improve a random set using trained RL
— We stop if DO NOTHING is issued 3 times in a row

RS

— v i parameter i
S | updates |

nh Q. 1

ta+ -E | A |

+ > | LY [

: 2 | tanh |
hand 9 L |

| tanh |

“@_ . boollenum int
/ | param. param.
\ / 4 4

netlist graph initial parameters

What About After Routing?

N TS

placement i placement = routing
HPWL:5.26m § W i HPWL: 5.11m @ “WL:6.24m

openpiton

placement i , ' placement
HPWL: 4.88m | —WIE=8.01 HPWL: 4.45m

netcard

placement
HPWL: 4.99m

placement
HPWL: 4.34m

routing

“WL6.10m

(@) human desng (mok 8hr5) (b) Multi-Armed Bandlt (mok 2Dhrs] (c) reinforcement learning (’tk 25m|n}

	Machine Learning-Powered VLSI Physical Design Automation
	Agenda
	Machine Learning EDA: ML Outside
	Machine Learning EDA: ML Inside
	ML-Powered Clock Routing
	Two Clock Trees
	Very Different Results
	ML-Powered Clock Routing
	Generative Adversarial Network (GAN)
	Solution: Generative Adversarial Learning
	Why Images?
	Our Generator
	Our Discriminator
	Regression Learning
	How Do We Use Trained GAN?
	GAN-Generated Fake Clock Trees
	GAN-optimized Clock Tree
	ML-Powered Timing Optimization
	Concurrent Clock and Data Optimization
	Useful Skew Optimization
	Our Timing Optimization Flow
	Transformer Architecture
	Reinforcement Learning (RL)
	Graph Neural Network (GNN)
	RL Strategy to Pick Endpoints
	Our Transformer Architecture
	Some Details
	Experimental Results
	Conclusions
	ML-Powered Circuit Placement
	Placement Parameters
	Reinforcement Learning
	Our RL Framework
	Our Actions and Reward
	Our Agent Architecture
	20 Graph-Related Features
	32 GNN Features Using GraphSAGE
	How Do We Use Trained RL Agent?
	Experimental Setting
	Training Results
	How Do We Use Trained RL Agent?
	What About After Routing?

