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Outline

• Introduction to generative models and digital twins

• Generative Adversarial Networks (GANs)

• Conditional GAN for PAM4 SerDes

• Conditional GAN for advanced packaging power to thermal analysis

• Bayesian optimization of high-speed SerDes receivers

• Conclusion and future work
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GENERATIVE MODELS AS DIGITAL TWINS
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Generative Digital Twins

• Digital twins are computational models that cover the solution space 
within a targeted design limit

• Asymmetrical training vs. inference speed
• Large dataset and high computational demand to train a generative model

• Lightweight and fast computation for inference

• Realtime prediction of SI or multi-physics (power/thermal) systems

• Allow dynamic performance tuning based on changing input 
condition

• Generative models may have invertible solutions, i.e., given a 
desirable output, what is the most likelihood input condition
• Can be constrained by power, space etc
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Generator Example
CGAN Engine For Power To Thermal Analysis

10/9/2023 6

• The generator is given the input power map to predict the corresponding heat map
• Uses convolutional layers with skip connections on the encoder*
•  Decoder reconstructs from the hidden (latent) space

o Contains Convolutional Transpose layers to upsample
• Skip connections ensure that no information is lost and that gradients are stable during the 

training phase

* P. Isola, J. Zhu, T. Zhou, and A. A. Efros. 2017. Image-to-image translation with conditional adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 5967–5976. https://doi.org/10.1109/CVPR.2017.632

Kashyap et al: International 3D System Integration Conference 3DIC 2023

https://doi.org/10.1109/CVPR.2017.632


Discriminator Example
Conditional GAN For High Speed SerDes
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• Discriminator is a U-Net architecture that predicts both a full pixel map (at decoder output) and a single 
true/false prediction (at the bottleneck) for a given input*

• Takes the input GASF and either the ground truth BER plot or generated BER plot

• Predicts whether the concatenated image is from the dataset or generator using two levels of prediction

* E. Schonfeld, B. Schiele, and A. Khoreva. 2020. A U-Net based discriminator for generative adversarial networks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8207–8216.

Choi Et al; DesignCon 2023
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• cGAN engine can predict unseen input and equalizer condition

PAM4 Digital Twins

Interpolate Between Gain (system) ConditionsInterpolate Between Channel (Input) Conditions

Choi Et al; 2023 DesignCon



3DIC Power To Thermal Analysis
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Bayesian Learning for PCIe Gen 5 I/O Optimization

• System performance taps (up to 14) are set by Bayesian optimizer

1-50 are initial random samples

max: 588 at 8th iteration (each 
iterations 3 parallel samples)

vs Auto tuning: 640 

Maximum opening
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Bayesian optimization vs auto-tune PCIe Gen 5 I/O

Eye Width: 0 mUI   Eye Height: 0 mV Eye Width: 287 mUI   Eye Height: 165 mV

Auto tune Bayesian optimized



Conclusion and future work
• cGANs can produce realistic results that can cover unseen input or 

output states within a design boundary

• We have moved on to transformer-based generator architectures for 
time series inputs (Under review)

• Application of Stable Diffusion will be our subsequent investigation if 
there are sufficient computing resources

• Both input and tap condition can scale to 100’s of features in a real 
design

• Digital twins can model the input and tap conditions in real time
• It will open possibility of dynamic optimization of the system with the digital 

twin model as a parallel shadow system without disturbing the real system at 
runtime
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Live demo of PAM4 CGAN and NRZ CGAN
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Thank you
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