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Introduction
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• What is the non-artificial intelligence?

• The ability to speak?

• We are the only animal that can “speak”.

• We are also the only “intelligent” one.

• Natural language processing (NLP)?

• Large language models (LLMs)?

• What does it have to do with EDA?

• Go read books and learn on your own?

• Code-free solution assisting the engineers?

• AI/ML needs to be applied 

at different stages of 

design and test.

Why AI/ML for EDA?

“The ability to speak does not make you intelligent.”

- Qui-Gon Jinn 

   Star Wars: Episode I - The Phantom Menace

Keysight PathWave System Design (SystemVue) Keysight 5G Over-The-Air (OTA) chambers



5

• Design complexity

• Has been increasing exponentially.

• Workforce is scaling at a slower rate.

• E.g., 6G, Quantum, Automotive, Defense, etc.

• AL/ML opportunities

• Capturing new business

• Avoiding loss of current business

• Solution complexity

• Should be appropriate to the problem scale, 

complexity, and data volume.

• i.e., do not use AI/ML if easier solutions exist

• Customized and modified for EDA

Revolutionizing EDA
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Background Review
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• Bias and variance in linear regression      ℎ 𝒙 =  𝛽𝑇𝒙 + 𝛽0  

• Generalized model complexity tradeoff

Less parameters, Simpler model 

High bias, low variance

Model is underfit

More parameters, Complex model 

Low bias, High variance

Model is Overfit

Model complexity

• Add features (parameters) to achieve Low bias

• How to control variance (avoid Overfitting) 

1. Reduce the model complexity

2. Regularization

• Reduce model complexity will increase the bias. 

So, our choice is regularization

• If you are using regression without regularization, you 

have to be very special!’

– Owen Zhang, Chief Product Office, DataRobot

Error

Model complexity

Training Data

OverfittingUnderfitting

Test Data
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Artificial Neural Networks (ANN)

Figure copyright Alex Krizhevsky, Ilya 

Sutskever, and Geoffrey Hinton, 2012. 

Input image

Weights

Loss

AlexNet

Images credit: Georgia Tech CS 7643

• 2-layer neural network:

 𝒚 = 𝑾2𝑓 𝑾1. 𝒙

• 3-layer neural network:

 𝒚 = 𝑾3𝑓 𝑾2𝑓 𝑾1. 𝒙  

• Increasing number of layers 

→ Deep Neural Network

• Why do not we always use a deep neural network?

• Activation functions:

https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/#schedule
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Convolutional Neural Network 

• Convolutional layer:

• Spatial correlation is local

• Share the same parameters

across different locations

(convolution with learned kernels)

• Significantly decreases number 

of parameters

• Example:

From Georgia Tech CS 7643 which credits Marc'Aurelio Ranzato

Image from Georgia Tech CS 7643 which credits Yann LeCun, Kevin Murphy

Sharing the parameters and moving the filter

https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/#schedule
https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/#schedule
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Bayesian Optimization (BO)

• BO algorithm

• Fast convergence and applicable to nonlinear and expensive functions.

• Based on the Bayes’ theorem: 

𝑃 𝑓 𝑥 |𝐷1:𝑡  ∝ 𝑃 𝐷1:𝑡|𝑓 𝑥 𝑃 𝑓 𝑥

• 𝐷1:𝑡 = 𝑥1:𝑡, 𝑓1:𝑡  is the set of observations.

• 𝑃 𝑓 𝑥  prior and 𝑃 𝑓 𝑥 |𝐷1:𝑡  posterior distributions.

• 𝑃 𝐷1:𝑡|𝑓 𝑥 : likelihood of observing 𝐷1:𝑡 given prior 𝑃 𝑓 𝑥 .

• How to find the posterior distribution?               Gaussian process 

• Tradeoff between Exploration and Exploitation

• How to choose the next sample point?              Acquisition function

Prior 
Distribution Next Point

Posterior 
Distribution

𝑓𝑡 ~ 𝒩 𝜇, 𝐊  

A function of 𝜇𝑡+1 and 𝜎𝑡+1
2
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Use-Cases



12

Use Case Technology Field Benefits

1.a DC and RF semiconductor 

device model generation

Neural Networks Device Modeling Automate and speedup 

the device Verilog-A 

modeling procedure

1.b DC and RF semiconductor 

device modeling parameter 

extraction

Neural Networks Device Modeling Automate and speedup 

the device modeling 

parameter extraction

2 Worst-case eye diagram 

analysis

Bayesian optimization High-speed Digital Faster channel 

analysis for non-LTI 

systems

3 Application of PINN for EM 

solvers

Physics Informed Neural 

Network (PINN)

RFMW(EM) Reducing the time of 

MoM matrix generation 

and its size

4 AI/ML for 5G and 6G Networks Convolutional Neural Network 

(CNN)

Communication Improving classical 

channel estimation

Use-cases
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IC design

1- DC and RF semiconductor device modeling and parameterization

ADS

• Conventional modeling process:

• Based on physical behavior

• Need to find hundreds of parameters to match with measurements

• Can take weeks to months.

IC-CAP

Measurements Modeling Design

DC, CV, S-par, Pulsed IV
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• Proposed solution:

• Use neural networks to generate device models.

• New Keysight ANN architecture to train using derivative of parameters.

• Keysight ANN can extract charge models from capacitive information.

1.a- DC and RF semiconductor device model generation

y = x2

x

y dy/dx

x x

yy

x

Data
Keysight 

ANN
Model

( ), , , ,ANN

d dI I Vg Vd T W L=
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1.a- DC and RF semiconductor device model generation

• Keysight ANN EXAMPLE: GaAs HEMT

• 4x core nonlinear model functions 

generated in parallel from data and 

validated within minutes

• Both currents and charges are well 

modeled as shown in the IV and S-

parameters measured vs. simulated plots

Note how the model can predict well IV and S-

parameter curves that were not used for training
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1.b- DC and RF semiconductor device modeling parameter extraction

• Neural networks are non-physical

• Physical model extrapolation is limited by physics

• Keysight ANN model extrapolation is limited by data

• Neural networks models are not transparent

• Lack of physical description

• People are afraid to use them

• Can we create the physical models using AI/ML?

• Find hundreds of characteristic parameters required for the physical equations

 

 

Given: Measurement Data (in many plots) Result: Complete netlist (an array of parameters)

𝒇(𝒙)
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1.b- DC and RF semiconductor device

modeling parameter extraction

• Extraction demo:

• BSIM CMG

• One geometry

• Three temperatures

• Extraction Time:

2 seconds

• Devices:

DC_IV_D25

• Temperatures:

Tnom, T2, T3

• 10 output parameters

(40 with K_PowerMOS)
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• High-speed serial channels 

• Chip-to-chip communication for transmitting digital signals

• Noise and jitter from loss, reflection, crosstalk, discontinuities

• Data rate has been increasing exponentially

• Performance of the channel is evaluated with eye diagram

• Traditionally done by very long random transient simulation

• Intersymbol interference (ISI)

• Tail of a single bit response interfering with next bits

• Requires transient simulation of millions of  random bits 

• Statistical eye solutions

• Only applicable for linear time-invariant (LTI) systems

• Goal:

• Use machine learning to find the bitt-pattern resulting in the worst-case eye

2- Worst-case eye diagram analysis

Picture from 

www.onsemi.com
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• Eye height (EH): 

• Difference of lowest high symbol and highest low symbol.

• Eye width (EW): 

• Difference of the two innermost zero crossings.

• EH and EW are a function of previous symbols.

• Find the bit patterns causing these points

• Using Bayesian optimization. → Overlay the obtained waveforms → worst-case eye.

2- Worst-case eye diagram analysis

Reference: M. Ahadi, et. al. “Worst-case eye analysis of high-speed channels based on Bayesian optimization”, IEEE TEMC, V. 63. N. 1, 2020.

(Best TEMC Transaction Award)
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• Give an index number to each bit 

pattern corresponding to the value 

that it shows.

• Example:

• Other applications:

• Worst-case bit pattern generator

2- Worst-case eye diagram analysis

Eye height 

(mV)

Eye width 

(ps)

Number of 

bits

Worst-eye 

(1st round)
639 745 5,760

Transient 

Eye
639 744 1,000,000

47X speedup 
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• With increasing complexity of high frequency electronic devices

→ EM simulation performance is becoming more critical

• Planar method of moments (MOM)

• One of the most common EM simulation methods

• Complexity of 𝑂(𝑛3)

• 𝑛: Number of unknowns on a meshed conductor

• Meshes are comprised of triangular and rectangular simplices
→ Only vector basis functions (VBFs) for which there is a straightforward 
analytical solution → increasing 𝑛

• Recently proposed Generalized Poisson-Neumann Basis Functions

• Partial differential equation (PDE) for generating VBFs on an arbitrary polygonal simplex

• Significant improvement in simulation performance

• Requiring solving a complex numerical problem

• Proposed ML approach

• Utilizing Physics Informed Neural Network (PINN) 

• Solving the PDE problem

• Building vector basis functions on a generalized polygonal domain

3- PINN Polygonal Vector Basis Function Model

Keysight Pathwave Momentum
Advanced Method of Moments (MoM) 3D planar EM simulator

While there are straightforward analytic solutions for triangular 
and rectangular VBSs, there is none for general polygons.This project has received funding from the European Union’s Horizon 2020 research and 

innovation programme under the Marie Skłodowska-Curie grant agreement No 860023.
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• Physics informed neural networks (PINNs)

• Able to solve PDE problems by encoding the differential equation and boundary conditions into the objective function 

used for training.

• Proposed approach:

• Training a PINN model to store general VBF properties

• Advantages:

• Fast ad hoc query of the PINN model during 

the MoM solution building 

• Reduces time and memory requirements 

• PINNs are not limited by the convexity and

simple connectedness solution requirement

• Inherit transfer learning property of NNs

3- PINN Generalized Polygonal Vector Basis Function Model

VBFs on a non simply connected (left) and non concave (right)
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• Example:

• Training the PINN on a set of quadrilaterals

• Using PINN Python library (deepXDE)

• Randomly generated quadrilaterals

• 40 for training 

• 10 for validation

• Shallow NN: 2 layers with 30 neurons each 

• To enable fast ad hoc queries

• Sampling: 500 points within the domain

of the shapes (trained on PDE) and 

500 sampling points on the boundary

(trained on BCs)

3- PINN Generalized Polygonal Vector Basis Function Model

Average error of the training set (full line) and the 

validation set (dashed line) throughout training

This project is a collaboration with Karlsruhe Institute of Technology
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4- AI/ML for 5G and 6G Networks
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• Channel estimation using Convolutional Neural Networks

•  Network

• PathWave System Design (SystemVue) workflow PoC

• Transmission: 5G DM-RS pilots over CDL channel

• Goal: Estimate the channel from the pilots, using NNs 

interpolation techniques improving what can be done 

with classical methods (MMSE)
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DM-RS mapped at:
→ Symbols: [2, 11]
→ Subcarriers: [0, 1, 6, 7]
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4- AI/ML for 5G and 6G Networks
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Received DMRS 
symbols

(only 4 RBs shown)

Perfect channel info
(filter taps, etc.)

Ideal estimator

Compare
(MSE metric)

Ideal output (training DS)

CNN output

Model training using SystemVue data

CNN Training
(ADAM)

ideal
output

Updated NN 
params

← PWSD TensorFlow/Keras →

Naïve interpolation
griddata(...)

CNN model

NN Input
(training DS)
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• Performance review:

• Machine learning model inference in SystemVue:

4- AI/ML for 5G and 6G Networks

This project is in collaboration with Universidad de Málaga



Thank you
Questions?

Majid.ahadi@keysight.com
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