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A Brief History of AI Models 
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Computer Vision (CV) Models Explosion Large Language Model (LLM) Explosion

* Source: Partly from Hoi-Jun Yoo, ISSCC 2019



Characteristics of Vision and Language Models
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Vision Models Language Models

Sparsity benefits both Vision and Language Models: 
Reduce memory capacity and bandwidth requirement
Faster Computation  

+ Small models (millions of parameters)

+ Large Input Size (4k/8k images)

+ Throughput-sensitive within latency constraint

+ From convolution to transformer

+ Non-AI functions (image/video/pre-post processing)

+ Higher Parallelism and Computation-bounded

+ Large Models (billions of parameters)

+ Small input size (context window 128 – 32K) 

+ Latency and Throughput Sensitive

+ Data-dependent computation (token by token)  

+ Pre-post processing: Tokenizer, Beam Search (etc.)

+ Single-card to multiple-card inference

+ Memory or I/O bounded



Outline

• Introduction to ML Inference

• Sparsity in ML Inference

• Hardware Software Co-design for Sparsity

• Case Studies: Sparsity Support in CPU, GPU and AI Chips

• Summary

5



Introduction to ML Inference

+ ML Model Operations Converges to a small subset of operators 

– ONNX v1.15.0 (192 Operators) 

– Key operators:

▪ >90% of Number of Parameters and Computation FLOPS

▪ Convolution, Matrix Multiplication, Inner Product, Element-wise 

Addition, Mean, Reshape, etc.
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ResNet50: Conv, Matrix Multiplication, Pooling, ReLU
Transformer: Matrix Multiplication, Element-

wise Operations, GELU, Softmax, Embedding 

Lookup, etc.



Sparsity in ML Inference 
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X =

Weight/Activation Activation Output

+ The core of ML inference is Tensor Algebra

+ Zeros naturally exist or can be induced in Tensors 

+ No need to store zero or compute zero in a tensor

– Huge benefits: less storage, computation 

time, memory bandwidth, reduce power

– “Sparsity Tax”: Extra HW cost for 

compression, decompression, schedule (limit 

the throughput and extra power/area 

overhead)

Sparse Matrix Multiplication
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0D Tensor/ Scalar

Tensor Format



Sparsity is an Active Algorithm Research Area
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• The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural 

Networks (MIT) – ICLR 2019 Best Paper

→ Any dense neural network contains one sparse neural network

Image Credit: Torsten Hoefler et.al, Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
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Google & Deepmind paper, “Fast Sparse ConvNets”



Type of Sparsity in ML Inference
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+ Static and Dynamic Sparsity

+ Static Sparsity 

+ Static Weight Sparsity (Pruning)

+ Dynamic Sparsity 

+ Activation Sparsity

+ Conditional Sparsity

+ Contextual/Attention Sparsity 

+ Mixture of Experts (MoE)

+ Sparsity Granularity

+ Coarse-granularity Sparsity

+ Fine-grained Sparsity

+ Sparsity Patten 

+ Structured sparsity  

+ Unstructured sparsity

FFN0 FFN1 FFN2 FFN3

Router

Activation Sparsity

Conditional Sparsity

Mixture of Experts (MoE) Sparse Attention



Sparse Matrix Storage Format
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+ Bitmap

+ Run-length /delta

+ Compressed Sparse Row / Column (CSR/CSC)

+ Coordinate Offset (index, value)

+ Hierarchical Hybrid Sparse Format 

Image Credit: Torsten Hoefler et.al, Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks



Sparse Matrix Format: CSR and CSC Format
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CSR Format
• Data: an array for all non-zero values
• Column_offsets[i]: records the actual column index 

of the data[i]
• Row_pointers[i]: records the number of non-zero 

of of all (i-1) rows 

Compressed Sparse Column (CSC)

Column Pointers

Row Offset

Data a b c d e f g

0 0 0 1 2 2 3

0 1 2 4 7

CSC Format
• Data: an array for all non-zero values
• Row_offsets[i]: records the actual row index of the 

data[i]
• Column_pointers[i]: records the number of non-

zero of of all (i-1) columns 



Sparse Matrix Format: Coordinate Index and Hierarchical Hybrid Format
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Image Credit: Se Jung Kwon et. al, Structured Compression by Weight Encryption for Unstructured Pruning and Quantization 

Hierarchical Hybrid Format
Top-level: bit-vector format: (0, 1, 1, 0)
Block-level: CSR/CSC/Coordinate Offset  

Coordinate Index
Structured and Unstructured Sparsity
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Sparsity Support on Hardware Devices

14

Highly-sparse Matrix/Vector
HPC field

Coarse-grained sparsity
Fine-grained 2:4 Structure Sparsity

All sparsity type 
(Dynamic, Static, Structured, non-structured, fine-

grained, coarse-grained, conditional execution)



Challenges in Designing Sparse Accelerators
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• Architecture/Algorithm Co-design
• Application Requirements
• Cost to Retrain
• Time-to-Market

• Decompression/compression
• Workload Imbalance
• Area and power overhead

Model 
Accuracy

Sparsity 
Tax

 

  Benefits
 

Design
Trade-off

• TCO Saving
• Wall-clock speedup  
• Power saving
• Area Saving (memory, die size)

General AI Accelerator Architecture Sparse AI Accelerator Design Trade-off



Example of End-to-End Compile-Aware Architecture Simulator 

+ Rapid architectural exploration

– Hardware Architecture Models

– Workload Models

+ Adaptive compiler and simulator

+ Sparsity ratio and overhead in the 
loop

+ Results in seconds

Architecture Definition

Workload Definition

Script

Data Types, Transforms

Actuators Transactors

Memories Networks

Clocks Resources

Data Types, Transforms, IR

Loader Converter

Transforms

Scenarios

Control

Compilation

Actuator Map Scheduling

Partitioning Mem Map

Routing Instancing

Simulation

Clocks Transactors

Engine GUI

Analyses Data Move

Activity Graph Actuators

Input Framework
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An Overview of Mainstream AI Accelerator Architecture 
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• CPU (X86, RISC-V): Vector/Matrix Instruction Extension
• Nvidia Tensor Core: 4x4 GEMM
• Huawei Ascend: 16x16 GEMM + VPU
• Google TPU: Systolic Array + VPU 
• Graphcore: Massively Parallel BSP Cores
• SambaNova: Dataflow RDU 
• Cerebras: Wafer-scale many-core architecture  
• Habala Labs/Intel Spring Hill: DSP Array + GEMM  
• Cambricon/Hanguang 800/NVDLA/Tesla FSD: DSA Accelerators

Popular AI 
Accelerators

• Spiking Neural Nets and Neuromorphic Architectures
• Resistor/Memristor matrices and Analog Computing
• Optical and Spintronics Implementations 

Special 
Technology

AI Accelerators

➢ Key buzz words: Systolic Array, Tensor Core, Vector Core, Many-core, DSA, Dataflow  

➢ Special Technology AI Accelerators: Very efficient for specific applications, limited operator support



Sparsity Support on CPUs
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Image Source: https://github.com/neuralmagic/deepsparse

+ CPU offers thread-level parallelism and dense 

vector/matrix extension

– Limited by low peak MAC performance of CPUs  

– Limited by SW for sparse matrix compress and 

decompress  

▪ Limit speedup for sparse matrix

▪ Available Intel Sparse BLAS support 

Neuralmagic’s DeepSparse Inference Runtime on CPU



Nvidia Ampere/Hopper Sparse Tensor Core

+ Fine-grained Structured 2:1 Sparsity

– Minimum change on Tensor-core Design

– Strong constraint on the sparsity distribution

– 1.44x – 1.85x speedup on Matmul/Conv 

Kernels

– 1.3x – 1.5x speedup for end-to-end 

applications (BERT/ResNetXt)
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Image Source: Nvidia website



MIT Eyeriss Project – Eyeriss v1 (2016 ISSCC)
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Image Source: Yu-Hsin Chen et. al Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks

+ One of the earliest AI Accelerator chip

– A Spatial Multi-PE architecture

– Support Weight Sparsity by reducing 

memory footprint and bandwidth

– Saving power by clock gating PE for zero 

operands

– No wall-clock speedup



MIT Eyeriss Project – Eyeriss v2 (2018)
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Image Source: Yu-Hsin Chen et. al Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices

+ Compared to Eyeriss v1

– A Scalable Architecture

– Change of matrix compressed format

– Dual-sparsity Support

– Wall-clock speedup



EIE: Efficient Inference Engine on Compressed Deep Neural Network (2016)
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Image Source: Song Han et. al, EIE: Efficient Inference Engine on Compressed Deep Neural Network

+ One of the earliest AI Accelerator research

– A Spatial Multi-PE architecture

– Support dual sparsity by reducing memory 

footprint and bandwidth and save wall-clock 

speedup

– Weight matrices: CSC format

– Proposed an activation buffer before different 

PEs for workload balance

– Use activation to lookup compressed weight



Alibaba Hanguang-800 Sparsity Engine (2020)
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Source: Hanguang 800 NPU – The Ultimate AI Inference Solution for Data Centers, Hotchips 2020

+ A High-performance 
Commercial Data-center 
Inference Chip

– DSA architecture

– Support weight 
compression in memory to 
reduce memory footprint

– No external DDR and all-on-
chip Memory

– Weight matrices: bit-vector 
representation for low to 
medium sparsity

– No wall-clock speedup 



SambaNova RDU Sparsity Support
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* Source: SambaNova SN10 RDU: Accelerating Software 2.0 with Dataflow, Hotchips 2021

+ A Reconfigurable Dataflow tiled 

Architecture (RDU series)

– Scalable design with on-chip 

switch connect array of RDUs and 

memory units 

– Scale-out support

– Support CSR-like matrix 

compression

– Wall clock-time speedup



Cerebras Sparsity Support
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Cerebras Architecture Deep Dive: First Look Inside the HW/SW Co-Design for Deep Learning, Hotchips 2022

+ A commercial data-flow 

wafer-scale spatial 

architecture

+ Fine-granularity fully 

unstructured sparse MatMul

+ 10x sparse utilization vs. GPU

+ Not clear on the weight 

sparse storage format 
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Moffett Deep-Sparse AI Inference Cards  

Antoum Chip SparseOne® AI Cards

S4 S10 S30

• Complete system-on-chip with deep sparse 

processing units supporting up to 32x sparsity

• One chip multiple PCIe products

• Complete end-to-end software toolchain 

(SparseOPT, SparseRT, SOLA runtime), please 

check http://docs.moffettai.com

• AI benchmark MLCommon validated 

performance results, please check 

http://mlcommons.org



Summary
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+ Sparsity is an active research area

– Promising direction for both Vision and LLM

– Save computation, memory bandwidth/capacity and power

– Reduce TCO 

+ The memory storage format is the key

– Affected by algorithm (sparsity ratio, accuracy)

– Impact on Memory/Datapath/Scheduler Design 

+ Sparse AI Accelerator needs trade off on more dimension

– Model Accuracy, Sparsity Overhead & Sparsity Benefits

+ Research and Commercial AI accelerators are embracing sparsity



Thank you and Questions?
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