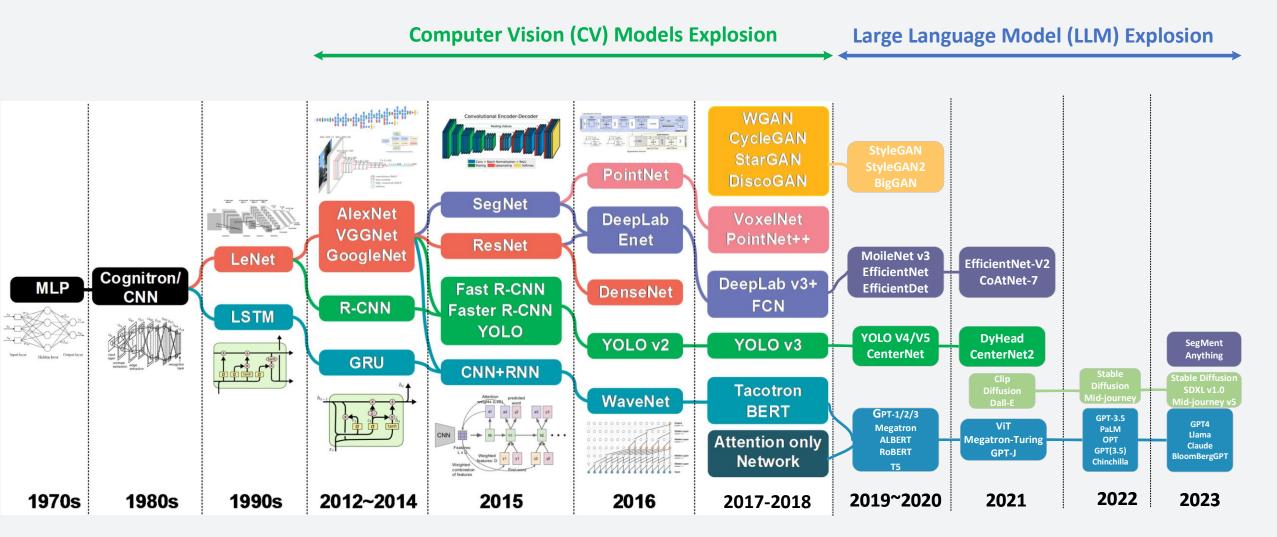


MOFFETT AI

Challenge and Opportunities to Accelerate ML Inference with Sparsity

Dr. Zhibin Xiao Co-founder and Chief-Architect Moffett Al

EDPS 2023, Oct 5th, 2023


Outline

- Introduction to ML Inference
- Sparsity in ML Inference
- Hardware Software Co-design for Sparsity
- Case Studies: Sparsity Support in CPU, GPU and AI Chips
- Summary

A Brief History of AI Models

Characteristics of Vision and Language Models

Vision Models

- + Small models (millions of parameters)
- + Large Input Size (4k/8k images)
- + Throughput-sensitive within latency constraint
- + From convolution to transformer
- + Non-Al functions (image/video/pre-post processing)
- + Higher Parallelism and Computation-bounded

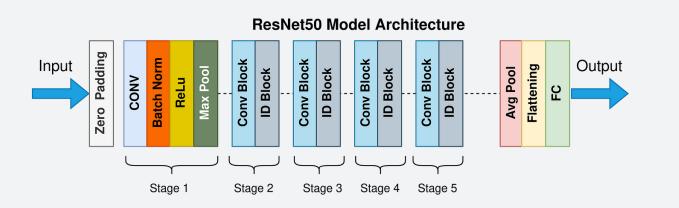
Language Models

- + Large Models (billions of parameters)
- + Small input size (context window 128 32K)
- + Latency and Throughput Sensitive
- + Data-dependent computation (token by token)
- + Pre-post processing: Tokenizer, Beam Search (etc.)
- + Single-card to multiple-card inference
- + Memory or I/O bounded

Sparsity benefits both Vision and Language Models: Reduce memory capacity and bandwidth requirement Faster Computation

Outline

- Introduction to ML Inference
- Sparsity in ML Inference
- Hardware Software Co-design for Sparsity
- Case Studies: Sparsity Support in CPU, GPU and AI Chips
- Summary



Introduction to ML Inference

- + ML Model Operations Converges to a small subset of operators
 - ONNX v1.15.0 (192 Operators)
 - Key operators:

- >90% of Number of Parameters and Computation FLOPS
- Convolution, Matrix Multiplication, Inner Product, Element-wise Addition, Mean, Reshape, etc.

ResNet50: Conv, Matrix Multiplication, Pooling, ReLU

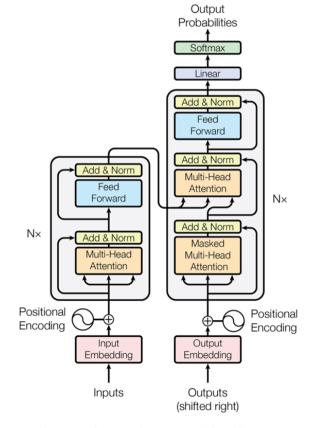
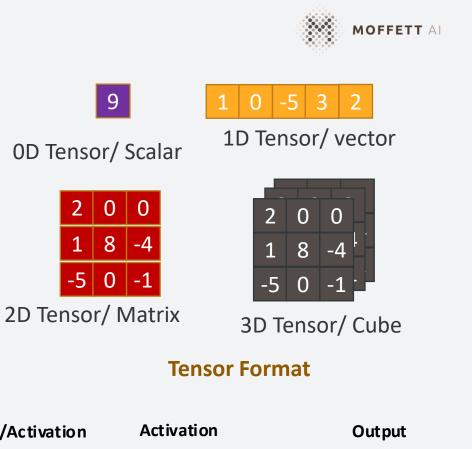
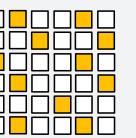



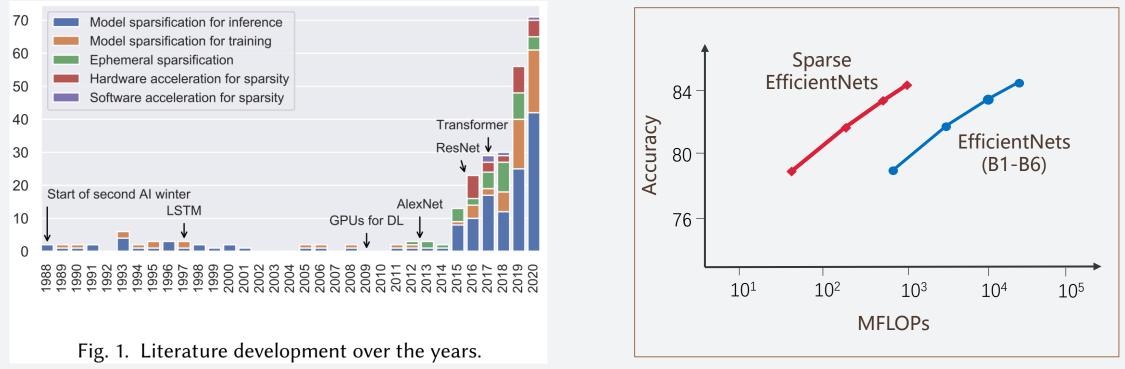
Figure 1: The Transformer - model architecture.

Transformer: Matrix Multiplication, Elementwise Operations, GELU, Softmax, Embedding Lookup, etc.


Sparsity in ML Inference

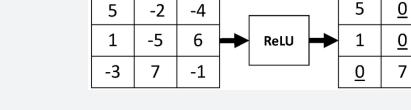
- + The core of ML inference is **Tensor Algebra**
- + Zeros naturally exist or can be induced in Tensors
- + No need to store zero or compute zero in a tensor
 - Huge benefits: less storage, computation time, memory bandwidth, reduce power
 - "Sparsity Tax": Extra HW cost for compression, decompression, schedule (limit the throughput and extra power/area overhead)

Weight/Activation

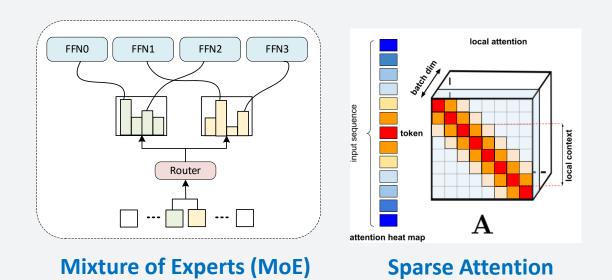


Sparse Matrix Multiplication

Sparsity is an Active Algorithm Research Area


Google & Deepmind paper, "Fast Sparse ConvNets"

• The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks (MIT) – ICLR 2019 Best Paper


 \rightarrow Any dense neural network contains one sparse neural network

Type of Sparsity in ML Inference

- + Static and Dynamic Sparsity
 - + Static Sparsity
 - + Static Weight Sparsity (Pruning)
 - + Dynamic Sparsity
 - + Activation Sparsity
 - + Conditional Sparsity
 - + Contextual/Attention Sparsity
 - + Mixture of Experts (MoE)
- + Sparsity Granularity
 - + Coarse-granularity Sparsity
 - + Fine-grained Sparsity
- + Sparsity Patten
 - + Structured sparsity
 - + Unstructured sparsity

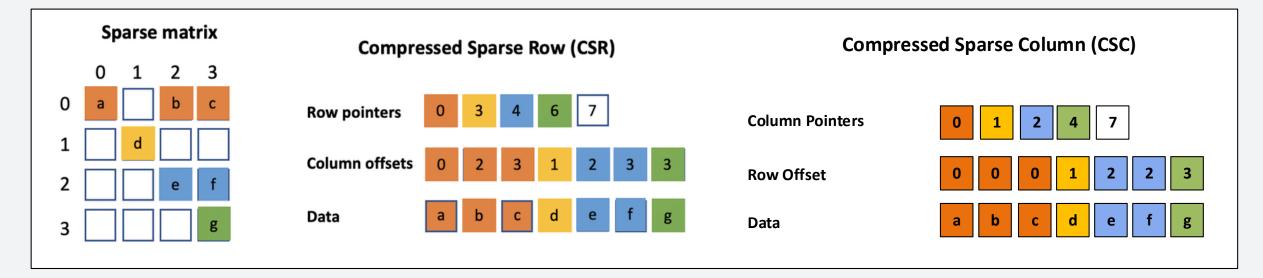
Conditional Sparsity

<u>0</u>

6

<u>0</u>

Sparse Matrix Storage Format

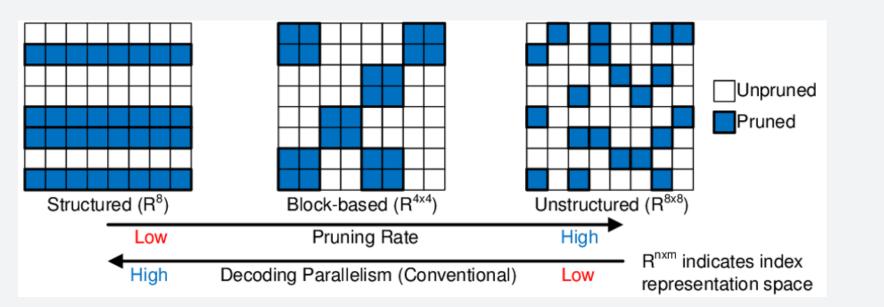


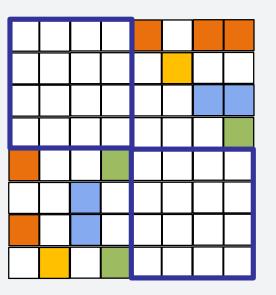
dense [0,2,0,0,3,4,0,0,0,0,0,5]		bitmap [010011000001 2345]	runlength / delta [1 2,2 3,0 4,5 5]	compressed sparse row [1] [1 2,2 3,0 4,5 5		umn coordinate offset [1 2, 5 3, 6 4, 12 5]		
1								
0%	10%		70%	90%	99.9%	99.99999%		
dense		low sparsity	medium sparsity	moderate sparsity	high sparsity	extreme		

- + Bitmap
- + Run-length /delta
- + Compressed Sparse Row / Column (CSR/CSC)
- + Coordinate Offset (index, value)
- + Hierarchical Hybrid Sparse Format

Sparse Matrix Format: CSR and CSC Format

CSR Format


• Data: an array for all non-zero values


- Column_offsets[i]: records the actual column index of the data[i]
- Row_pointers[i]: records the number of non-zero of of all (i-1) rows

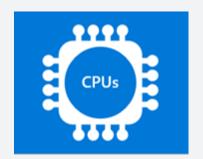
CSC Format

- Data: an array for all non-zero values
- Row_offsets[i]: records the actual row index of the data[i]
- Column_pointers[i]: records the number of nonzero of of all (i-1) columns

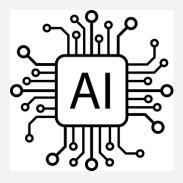
Coordinate Index Structured and Unstructured Sparsity

Hierarchical Hybrid Format

Top-level: bit-vector format: (0, 1, 1, 0) **Block-level:** CSR/CSC/Coordinate Offset


Outline

- Introduction to ML Inference
- Sparsity in ML Inference
- Hardware Software Co-design for Sparsity
- Case Studies: Sparsity Support in CPU, GPU and AI Chips
- Summary



Sparsity Support on Hardware Devices

Highly-sparse Matrix/Vector HPC field

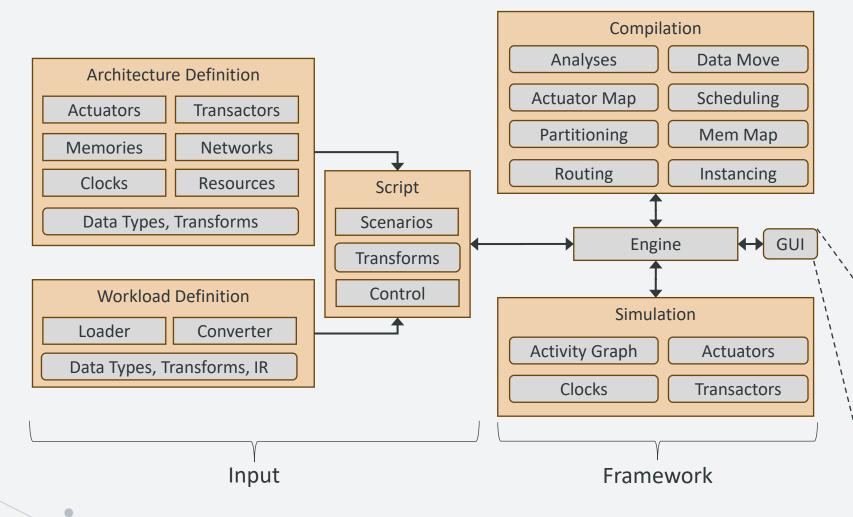
Coarse-grained sparsity Fine-grained 2:4 Structure Sparsity

•

All sparsity type (Dynamic, Static, Structured, non-structured, finegrained, coarse-grained, conditional execution)

Challenges in Designing Sparse Accelerators

- TCO Saving
- Wall-clock speedup
- Power saving
- Area Saving (memory, die size)



General AI Accelerator Architecture

Sparse AI Accelerator Design Trade-off

Example of End-to-End Compile-Aware Architecture Simulator

- + Rapid architectural exploration
 - Hardware Architecture Models
 - Workload Models
- + Adaptive compiler and simulator
- Sparsity ratio and overhead in the loop
 - Results in seconds

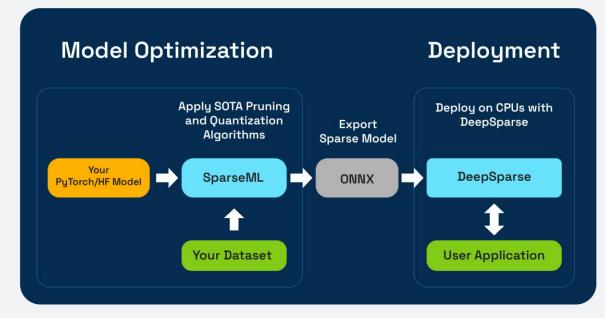
Arch Simulator	;
File Actions Edit Utility View Settings	
New Open Save Save As Run Script	
Script X Config X System X Workloads X	
system * 1	Wordwrap Wordwrap
Entry 899 Node 957 (copy) Node 958 (copy) Node 958 (copy) resnetv17 conv0 fwd 900 (nn.conv2 resnetv17 stagel conv1 fwd 902 (n resnetv17 stagel conv2 fwd 902 (n resnetv17 stagel conv2 fwd 902 (n resnetv17 stagel conv3 fwd 903 (n resnetv17 stagel conv3 fwd 904 (n resnetv17 stagel conv5 fwd 911 (n resnetv17 stagel conv5 fwd 913 (n resnetv17 stage2 conv1 fwd 913 (n resnetv17 stage2 conv5 fwd 915 (n resnetv17 stage2 conv5 fwd 915 (n resnetv17 stage2 conv5 fwd 915 (n resnetv17 stage2 conv5 fwd 917 (n resnetv17 stage2 conv5 fwd 917 (n resnetv17 stage2 conv5 fwd 917 (n	<pre>onv2d) vrite_vars: { result:resnetvl7_stagel_relul_fwd result:resnetvl7_stagel_relul_fwd result:resnetvl7_stagel_relul_fwd result:resnetvl7_stagel_relul_fwd result:resnetvl7_stagel_relul_fwd result:resnetvl7_stagel_relul_fwd ronv2d) dilations: [1, 1], onv2d paras: { relu: True, ronv2d strides: [1, 1], ronv2d prior_nodes: (895, 901, 902), nov2d prior_nodes: (904, 905, 906, 911, 915, 918, 921, onv2d 924, 929, 930, 932, 933, 935, 936, 938, 939, 941, onv2d side_nodes: (), </pre>

Outline

- Introduction to ML Inference
- Sparsity in ML Inference
- Hardware Software Co-design for Sparsity
- Case Studies: Sparsity Support in CPU, GPU and AI Chips
- Summary

An Overview of Mainstream Al Accelerator Architecture

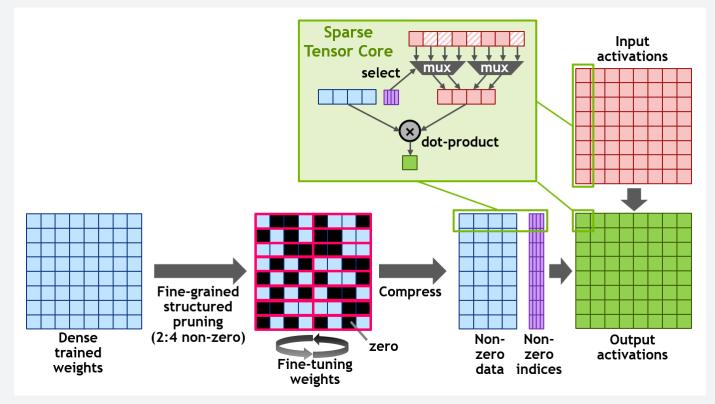
Popular AI Accelerators	 CPU (X86, RISC-V): Vector/Matrix Instruction Extension Nvidia Tensor Core: 4x4 GEMM Huawei Ascend: 16x16 GEMM + VPU Google TPU: Systolic Array + VPU Graphcore: Massively Parallel BSP Cores SambaNova: Dataflow RDU Cerebras: Wafer-scale many-core architecture Habala Labs/Intel Spring Hill: DSP Array + GEMM Cambricon/Hanguang 800/NVDLA/Tesla FSD: DSA Accelerators
Special Technology Al Accelerators	 Spiking Neural Nets and Neuromorphic Architectures Resistor/Memristor matrices and Analog Computing Optical and Spintronics Implementations


Key buzz words: Systolic Array, Tensor Core, Vector Core, Many-core, DSA, Dataflow

> Special Technology Al Accelerators: Very efficient for specific applications, limited operator support

Sparsity Support on CPUs

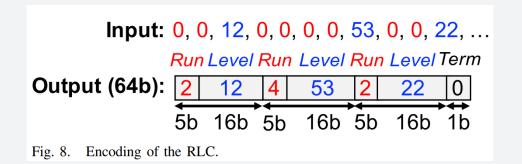
- + CPU offers thread-level parallelism and dense vector/matrix extension
 - Limited by low peak MAC performance of CPUs
 - Limited by SW for sparse matrix compress and decompress
 - Limit speedup for sparse matrix
 - Available Intel Sparse BLAS support


Neuralmagic's DeepSparse Inference Runtime on CPU

Nvidia Ampere/Hopper Sparse Tensor Core

+ Fine-grained Structured 2:1 Sparsity

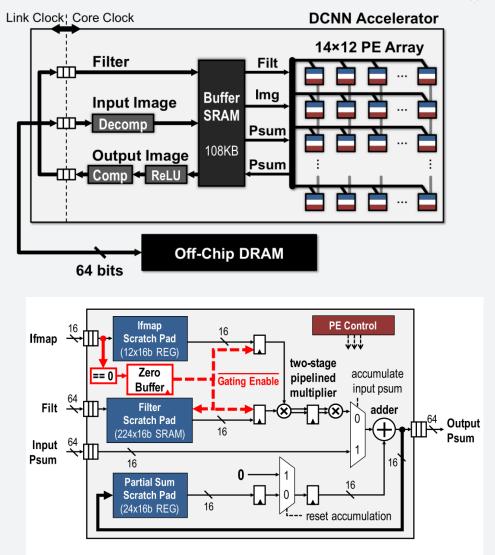
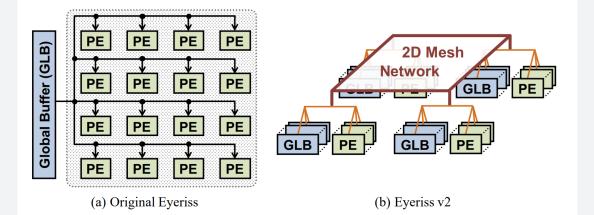
- Minimum change on Tensor-core Design
- Strong constraint on the sparsity distribution
- 1.44x 1.85x speedup on Matmul/Conv
 Kernels
- 1.3x 1.5x speedup for end-to-end applications (BERT/ResNetXt)

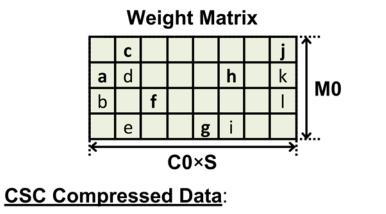


MIT Eyeriss Project – Eyeriss v1 (2016 ISSCC)

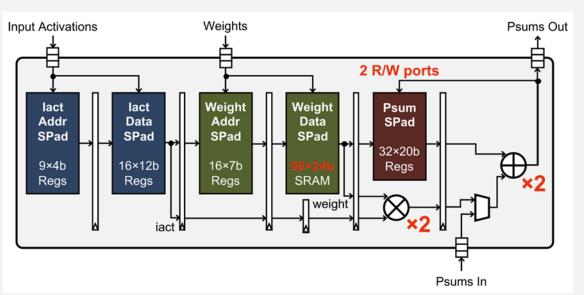
+ One of the earliest AI Accelerator chip

- A Spatial Multi-PE architecture
- Support Weight Sparsity by reducing memory footprint and bandwidth
- Saving power by clock gating PE for zero operands
- No wall-clock speedup


Fig. 12. PE architecture. The datapaths in red show the data gating logic to skip the processing of zero ifmap data.

MIT Eyeriss Project – Eyeriss v2 (2018)


+ Compared to Eyeriss v1

- A Scalable Architecture
- Change of matrix compressed format
- Dual-sparsity Support
- Wall-clock speedup

data vector:	{ a , b, c , d, e, f , g , h , i, j , k, l}
count vector:	$\{1, 0, 0, 0, 1, 2, 3, 1, 1, 0, 0, 0\}$
address vector:	{0, 2, 5, 6, 6, 7, 9, 9, 12}

MOFFETT AI

EIE: Efficient Inference Engine on Compressed Deep Neural Network (2016)

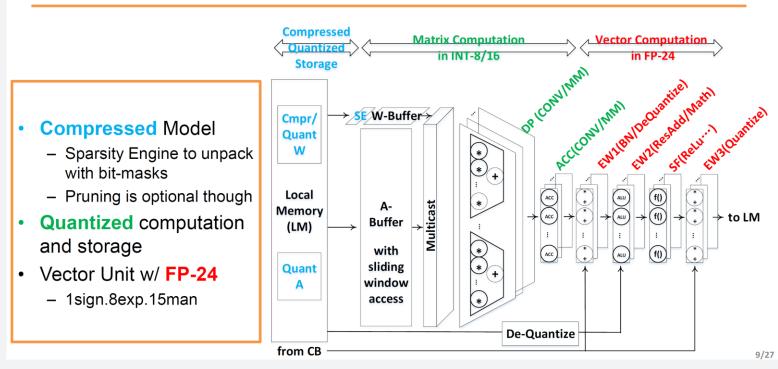
+ One of the earliest AI Accelerator research

- A Spatial Multi-PE architecture
- Support dual sparsity by reducing memory footprint and bandwidth and save wall-clock speedup
- Weight matrices: CSC format
- Proposed an activation buffer before different
 PEs for workload balance
- Use activation to lookup compressed weight

\vec{a}	(0	0	a_2	0	a_4	a_5	0	a_7)				
				×	<					$ec{b}$		
PE0	$(w_{0,0})$	0	$w_{0,2}$	0	$w_{0,4}$	$w_{0,5}$	$w_{0,6}$	0		$\begin{pmatrix} b_0 \end{pmatrix}$		$\begin{pmatrix} b_0 \end{pmatrix}$
PE1	0	$w_{1,1}$	0	$w_{1,3}$	0	0	$w_{1,6}$	0		b_1		b_1
PE2	0	0	$w_{2,2}$	0	$w_{2,4}$	0	0	$w_{2,7}$		$-b_2$		0
PE3	0	$w_{3,1}$	0	0	0	$w_{0,5}$	0	0		b_3		b_3
	0	$w_{4,1}$	0	0	$w_{4,4}$	0	0	0		$-b_4$		0
	0	0	0	$w_{5,4}$	0	0	0	$w_{5,7}$		b_5		b_5
	0	0	0	0	$w_{6,4}$	0	$w_{6,6}$	0		b_6		b_6
	$w_{7,0}$	0	0	$w_{7,4}$	0	0	$w_{7,7}$	0	=	$-b_{7}$	$\stackrel{ReLU}{\Rightarrow}$	0
	$w_{8,0}$	0	0	0	0	0	0	$w_{8,7}$	-	$-b_{8}$	-	0
	$w_{9,0}$	0	0	0	0	0	$w_{9,6}$	$w_{9,7}$		$-b_9$		0
	0	0	0	0	$w_{10,4}$	0	0	0		b_{10}		b_{10}
	0	0	$w_{11,2}$	0	0	0	0	$w_{11,7}$		$-b_{11}$		0
	$w_{12,0}$	0	$w_{12,2}$	0	0	$w_{12,5}$	0	$w_{12,7}$		$-b_{12}$		0
	$w_{13,0}$	$w_{13,2}$	0	0	0	0	$w_{13,6}$	0		b_{13}		b_{13}
	0	0	$w_{14,2}$	$w_{14,3}$	$w_{14,4}$	$w_{14,5}$	0	0		b_{14}		b_{14}
	0	0	$w_{15,2}$	$w_{15,3}$	0	$w_{15,5}$	0	0		$\left(-b_{15}\right)$		$\left(\begin{array}{c} 0 \end{array} \right)$

Figure 2. Matrix W and vectors a and b are interleaved over 4 PEs. Elements of the same color are stored in the same PE.

Virtual Weight	W _{0,0}	W _{8,0}	W _{12,0}	W _{4,1}	W _{0,2}	W _{12,2}	W _{0,4}	W _{4,4}	W _{0,5}	W _{12,5}	W _{0,6}	W _{8,7}	W _{12,7}
Relative Row Index	0	1	0	1	0	2	0	0	0	2	0	2	0
Column Pointer	0	3	4	6	6	8	10	11	13			, , ,	


Figure 3. Memory layout for the relative indexed, indirect weighted and interleaved CSC format, corresponding to PE_0 in Figure 2.

Alibaba Hanguang-800 Sparsity Engine (2020)

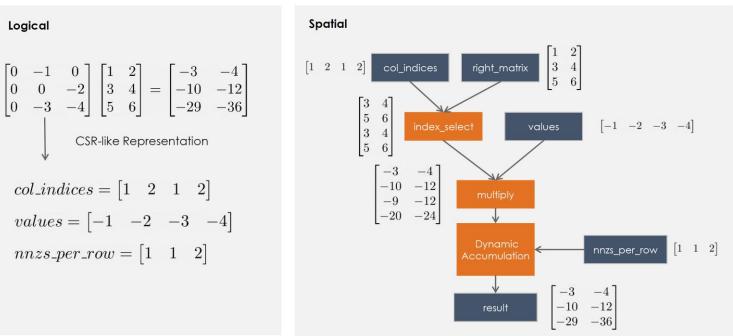
+ A High-performance Commercial Data-center Inference Chip

- DSA architecture
- Support weight compression in memory to reduce memory footprint
- No external DDR and all-onchip Memory
- Weight matrices: bit-vector representation for low to medium sparsity
- No wall-clock speedup

Compressed and Quantized Storage/Processing

Source: Hanguang 800 NPU – The Ultimate AI Inference Solution for Data Centers, Hotchips 2020

SambaNova RDU Sparsity Support



+ A Reconfigurable Dataflow tiled **Architecture (RDU series)**

- Scalable design with on-chip switch connect array of RDUs and memory units
- Scale-out support
- Support CSR-like matrix compression
- Wall clock-time speedup

Sparse Matrix Multiply on RDU

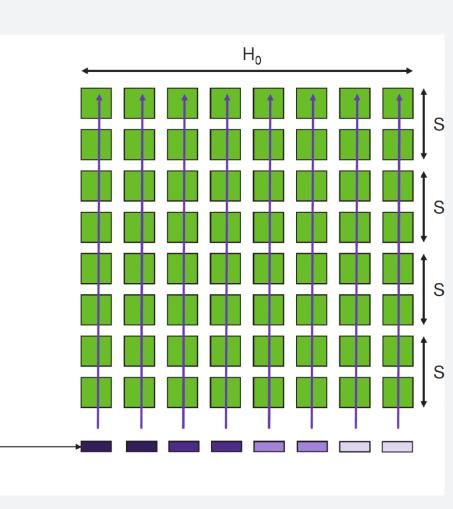
Logical

Cerebras Sparsity Support

- + A commercial data-flow wafer-scale spatial architecture
- Fine-granularity fully unstructured sparse MatMul
- + 10x sparse utilization vs. GPU
- Not clear on the weight
 sparse storage format

GEMM with Sparse Input

Dataflow scheduling enables fully unstructured sparse MatMul with low overhead


- · Executed as a series of AXPY operations per row
- · Row of non-zero weights broadcast over columns of cores
- Each individual weight triggers FMACs

H₁

- No compute for zero weights, not streamed in at all
- · No memory used for weights, not even stored temporarily

Weights

H₀

Moffett Deep-Sparse AI Inference Cards

- Complete system-on-chip with deep sparse processing units supporting up to **32x sparsity**
- One chip multiple PCIe products
- Complete end-to-end software toolchain (SparseOPT, SparseRT, SOLA runtime), please check http://docs.moffettai.com
- AI benchmark MLCommon validated performance results, please check http://mlcommons.org

Summary

+ Sparsity is an active research area

- Promising direction for both Vision and LLM
- Save computation, memory bandwidth/capacity and power
- Reduce TCO

+ The memory storage format is the key

- Affected by algorithm (sparsity ratio, accuracy)
- Impact on Memory/Datapath/Scheduler Design
- + Sparse AI Accelerator needs trade off on more dimension
 - Model Accuracy, Sparsity Overhead & Sparsity Benefits
- + Research and Commercial AI accelerators are embracing sparsity

MOFFETT AI

Thank you and Questions?