

MACHINE LEARNING FOR EDA OPTIMIZATION

Chia-Tung (Mark) Ho, NVResearch ASIC/VLSI group, 10/5/2023

AGENDA

Background & Motivation

Machine Learning for EDA Optimization

Conclusions

BACKGROUND & MOTIVATION

BACKGROUND & MOTIVATION

- Optimization is one of the fundamental problems in EDA
- Goal: Improve power, performance, area, and cost (PPAC) Minimize $f(x_1, x_2, \dots, x_n)$
 - Subject to $g(x_1, x_2, \dots, x_n)$
- The functions might be non-linear, non-convex, and discrete
- Design challenges of modern circuit design in advanced nodes
 - billions of transistors
 - Increasing number and complexity of design rules
 - Routability
 - Strict pattern rules
- ML opportunities: Improve the productivity, efficiency, and quality

MACHINE LEARNING FOR EDA OPTIMIZATION

NVCELL: REINFORCEMENT LEARNING BASED STANDARD CELL GENERATION WITH NOVEL TRANSFORMER MODEL-BASED CLUSTERING

Publication:

- 1. Ho, Chia-Tung, et al. "Novel transformer model based clustering approach for NVCell." NTECH. 2023 (to be appear).
- 2. Ren, Haoxing, and Matthew Fojtik. "Nvcell: Standard cell layout in advanced technology nodes with reinforcement learning." 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021.
- 3. Ho, Chia-Tung, et al. "NVCell 2: Routability-Driven Standard Cell Layout in Advanced Nodes with Lattice Graph Routability Model." Proceedings of the 2023 International Symposium on Physical Design. 2023.

STANDARD CELL LAYOUT AUTOMATION

- Std cells are building blocks of digital design layout: AND, NOR, Flip-Flop, Adder, etc
- Layout mostly by hand today, long design turn around time for the library (a few months)
- Standard cell automatic layouts <u>Fast design turn around time, More custom cell design, Design Technology</u> <u>Co-Optimization</u>

ROUTABILITY AND PPA-DRIVEN STANDARD CELL DESIGN AUTOMATION

- Standard cell layout design automation challenges as advancing beyond 5nm
 - **Limited in-cell routing resource -** less routing tracks (i.e., < 5 RTs)
 - **Design rule complexity:** Increasing number and complexity of design rules + strict patterning rules
 - **Scalability:** > hundreds of transistors cell designs
- Multi-Objective Optimization: Scalability, Routability, and high quality on PPA metrics

november-2018/the-supervia-a-promising-scaling-booster-for-the-sub-

3nm-technology-node

Routability challenges of a Latch Design in advanced node

NVCELL: STANDARD CELL DESIGN AUTOMATION FRAMEWORK

- Layout-Aware Transformer Model Based Device Clustering
 - High-Quality clustering to reduce complexity, narrow down searching space, and assist finding routable solutions

- Lattice graph routability model in SA placer
 - Capture the local pin density and global net connections

- Reinforcement learning agent for DRC fixing
 - Model DRC fixing as a game to improve productivity and efficiency

LAYOUT-AWARE DEVICE CLUSTERING

- High quality clustering should consider transistor layout: Diffusion break/sharing, Transistor pin access, and Routing metal DRCs
- Reduce complexity, Narrow down searching space, and Assist finding routable layouts
- -> Transformer model-based clustering approach

Global receptive field, netlist information, and device placement relations

LAYOUT-AWARE DEVICE CLUSTERING

Generated LVS/DRC Clean Latch Design (~ 100 devices)

TRANSFORMER ENCODER ARCHITECTURE

Goal: Given netlist logic graph, learn the relationship between device pairs in the Layout graph

$$\left[\log \left(\sigma \left(y_{v}^{T} y_{u} \right) \right) - \sum_{k \sim rand} \log \left(\sigma \left(- y_{v}^{T} y_{k} \right) \right) \right)$$

≥ nvidia.

ROUTABILITY-DRIVEN PLACEMENT

Simulated Annealing based algorithm for placement: Swap, Move, Flip

Swap, move, and flip of placement sequence

- Routability Model: Lattice graph routability model predicts congestion and routability probability
 - Capture the interactions of local pin access and global nets given the placement

LATTICE GRAPH ROUTABILITY MODEL OVERVIEW

- Given: Circuit, transistor placement, and M1 Pin Placement Information
- Predict: Demanded routing resource and routability probability of each column
 - \hat{y}_{reg} : demanded routing resource (hori/vertical) at each column. dim = 1 x cell columns
 - \hat{y}_{rout} : routability probability at each column. dim = 1 x cell columns

formation ty of each column column. dim = 1 x cell columns cell columns

TRAINING LATTICE GRAPH ROUTABILITY MODEL

• Regression Loss Function:

$$L_{reg} = -\frac{1}{N} \sum (y_{reg} - \hat{y}_{reg})^2$$

• Routability Probability Loss Function:

$$L_{rout} = D_{KL}(Y_{rout} | | \hat{Y}_{rout}) = Y_{rout} \log \frac{Y_{rout}}{\hat{Y}_{rout}}, \quad Y_{rout} = Softmax$$

$x(y_{rout}), \ \hat{Y}_{rout} = Softmax(\hat{y}_{rout})$

Model Output: Routability Probability and Horizontal Congestion Prediction

📀 NVIDIA.

ROUTING

- Leverage maze routing to generate routing candidates
 - \rightarrow solve the connectivity problem
- Leverage RL to fix DRC of the routing candidates
 - \rightarrow solve the DRC problem
- Leverage genetic algorithm to minimize unroutable nets and DRC numbers
 - \rightarrow solve the optimization problem

GAME OF FIXING DRC

Adding additional MO grid to reduce DRCs

FIX DRC WITH RL

DRC RL MODEL

Agnostic to design size

DRC AGENT TRAINING

RL algorithm: PPO2 in stable-baselines

Training set: 10000 random maze routes for a flipflop cell

Generalizes to all the cells

Reward history of 9 training runs

DRC FIXING EXAMPLE

🧆 NVIDIA.

LAYOUT AND PERFORMANCE EVALUATION Create 100% cells in industrial standard cell library

	Success Rate (%)	
NVCell (DAC 2021)	0.0%	
NVCell2 (ISPD 2023)	87.2%	
Layout-Aware Clustering	100%	

On a difficult routing benchmark (94 cells)

Improved PPA metrics up to performance 7%, power 8%, and area 4%.

Cell Area Comparison

Smaller Same Larger

cess Rate	Cell Width Comparison			
(%)	Smaller	Same	Larger	
91.2%	11.8%	77.6%	1.8%	
98.8 %	13.7%	80.1%	4.3%	
100%	14.5%	83.3%	2.2%	

On entire cell library (over 1000 Cells)

CONCLUSIONS

CONCLUSIONS

- We can leverage ML to improve chip design automation productivity and QoR.
- Transformer model based and generative model can be leveraged to improve the efficiency and solution quality for EDA optimizations.
- Algorithms + GPU acceleration + ML: A new EDA computing paradigm!

Source: SIGGRAPH 2023

24

