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BACKGROUND & MOTIVATION

Optimization is one of the fundamental problems in EDA

Goal: Improve power, performance, area, and cost (PPAC)
Minimize f(xq, X9, ..., X))

Subject to g(xq, X5, .., Xp)
The functions might be non-linear, non-convex, and discrete

Design challenges of modern circuit design in advanced nodes
billions of transistors
Increasing number and complexity of design rules
Routability

Strict pattern rules

ML opportunities: Improve the productivity, efficiency, and quality
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STANDARD CELL LAYOUT AUTOMATION

Std cells are building blocks of digital design layout: AND, NOR, Flip-Flop, Adder, etc
Layout mostly by hand today, long design turn around time for the library ( a few months)

Standard cell automatic layouts - Fast design turn around time, More custom cell design, Design Technology
Co-Optimization
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ROUTABILITY AND PPA-DRIVEN STANDARD CELL DESIGN AUTOMATION

Standard cell layout design automation challenges as advancing beyond 5nm
Limited in-cell routing resource - less routing tracks (i.e., < 5 RTs)
Design rule complexity: Increasing number and complexity of design rules + strict patterning rules

Scalability: > hundreds of transistors cell designs

Multi-Objective Optimization: Scalability, Routability, and high quality on PPA metrics
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Standard Cell Scaling Roadmap from IMEC Routability challenges of a Latch Design in advanced node

Source: https://www.imec-int.com/en/imec-magazine/imec-magazine-
november-2018/the-supervia-a-promising-scaling-booster-for-the-sub-
3nm-technology-node
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NVCELL: STANDARD CELL DESIGN AUTOMATION FRAMEWORK

Layout-Aware Transformer Model Based Device
Clustering

High-Quality clustering to reduce complexity,
narrow down searching space, and assist finding
routable solutions

Lattice graph routability model in SA placer

Capture the local pin density and global net
connections

Reinforcement learning agent for DRC fixing

Model DRC fixing as a game to improve
productivity and efficiency

Schematic of Cell Logics (.sp)
(Netlist Information)

Layout Specification
(Cell Architecture)
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Layout-Aware Device Clustering

Encoder Layers with
Netlist and Layout Graph Aware Attention

Circuit Net

o
AN
External Pin Layer II !I
lattice grid (i.e., M1) /4 i ; I

FEOL lattice grid

11T
VLR ALT

D G D G D G D G D
D: Source/Drain Diffusion; G: Gate

GA based Router + RL DRC fixing
/ Ol'.:s‘emaﬁm:

Routing: [H™!, wM1]

DRC:  [H™, wM]
Initial Layout - Mask:  [HM, W] (URC RLAgent (o) e
Final Layout DRCEgvame L R h:d e s
DRCs
select an action based on action probability : {1 x W]

Multi-Objective Opt.

twil 500
480

Pareto front

Objective space:
CW, TWL, Congestion
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LAYOUT-AWARE DEVICE CLUSTERING

High quality clustering should consider transistor layout: Diffusion break/sharing, Transistor pin
access, and Routing metal DRCs

Reduce complexity, Narrow down searching space, and Assist finding routable layouts

-> Transformer model-based clustering approach
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Cluster boundaries [ * Il N

Diffusion Break
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Transistor
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(c) Routing metal DRCs

Global receptive field, netlist information, and device placement relations

(b) Transistor pin access ]
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LAYOUT-AWARE DEVICE CLUSTERING

Schematic of cell Logics(.sp)
(Netlist Information)
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Transformer Model Based Clustering

\ Transformer Encoder /

¥

Post Process

¥

Device J

Clusters =

Generated LVS/DRC Clean Latch Design (~ 100 devices)

Manual Cell Width = 58 / Generated Cell Width=56 TWL= 671

Attention heat map of the Generated LVS/DRC Clean Latch Design (~ 100 devices)

Netlist & Layout Graph Aware Multi-Head Attention Layer 1

Netlist & Layout Graph Aware Multi-Head Attention Layer 2

Netlist & Layout Graph Aware Multi-Head Attention Layer 3

Head 1 Head 2 Head 3 Head 4 Head 5 Head 6 Head 7 Head 8

NVIDIA.



TRANSFORMER ENCODER ARCHITECTURE

Goal: Given netlist logic graph, learn the relationship between device pairs in the Layout graph

(a) Transformer Encoder Architecture (b) Training Flow: Similarity loss (L;,,) from layout graph
N 1 @) PrET node\
|y (¥ @) NFET node
B —] .= — T — —uT
. t O Net node Lsrm Z ( u;v) log (U(YV Yu)) ) ;nd log (0( Vv YR)) >
\ Netlist logic graph j a(yfyu): Preferred clustering probability of two devices.

* N;(v): The neighbor of device v in the layouts
GINE Network: (v © Y

Extract graph embeddmgs of devices (tokens)

Transformer Encoder

Encoder Layers with 4 Layout graph (Neighbor columns all connected) N\

Netlist and Layout Graph Aware Attention PFET Row >
NFET Row > «»> >

[ ] :i-th gate terminal columns of PFET/NFET

Representative embedding of each device, y,,. \ «» : Edgesin layout graph j
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ROUTABILITY-DRIVEN PLACEMENT

Simulated Annealing based algorithm for placement: Swap, Move, Flip

-------------------
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Swap PMOS/NMOS pair segment (p3,p4) with (p1,p2) Move PMOS segment (3,4) from p1 to p3 Flip NMOS segment (2, 5, 4)

Swap, move, and flip of placement sequence

Routability Model: Lattice graph routability model predicts congestion and routability probability

Capture the interactions of local pin access and global nets given the placement

Net2

A1 -
N/ LI F AT AR AL AT AT
N AT

D G D G D G D G D
D: Source/Drain Diffusion; G: Gate

Lattice graph routability model 3 <nvibia

Circuit Net

Optional: External Pin
Layer lattice grid (i.e., M1) &

FEOL Ilattice grid




« Given: Circuit, transistor placement, and M1 Pin Placement Information

LATTICE GRAPH ROUTABILITY MODEL OVERVIEW

Predict: Demanded routing resource anc
* Yreg - demanded routing resource (

nori/vertical) at each column. dim =1 x cell columns

Vrout - routability probability at eac

Model Input: Lattice Graph from given transistor placement

Circuit Net

* ) A -

Optional: External P’ Layer lattice grid (1.e., M1)

.ll /\p: // : | / /I It‘ll
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D G D G D G D G D
D: Source/Drain Diffusion; G: Gate

Lattice Graph Routability Model

Shared
MLP

Graph Neural Net

N column. dim = 1 x cell columns

routability probability of each column

Model Output: Routability

Probability and Horizontal
Congestion Prediction

Vreg: Predicted horizontal congestion
of each column

Routability Probability

Horizontal Congestion

T T T T
0 40 60 80 100 120

Cell Column

Cell Column

V rout: Predicted routability probability
of each column
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TRAINING LATTICE GRAPH ROUTABILITY MODEL

« Regression Loss Function:

Lreg —

« Routability Probability Loss Function:

Lyour = Dgy (Yrout”?‘rout) Yroutlag

Model Input: Lattice Graph from given transistor placement

Circuit Net

L, ) A -

Optional: External P Layer lattice grid (1.e., M 1)

-

VYA | JL[ =
M‘_’/‘i7H/ /‘_’/ 17 £/ 7Hf

D G D G D G D G D
D: Source/Drain Diffusion; G: Gate

- %Z(Yreg R yreg)z

Yrout

Lattice Graph Routability Model

Graph Neural Net

Shared
MLP

y Yrout = Softmax(%"out)' Yrout = Softmax(yrout)
Model Output: Routability

Probability and Horizontal
Congestion Prediction

Vreg: Predicted horizontal congestion
of each column

Routability Probability

Horizontal Congestion

40

Cell Column

T
40

Cell Column

Y rout: Predicted routability probability
of each column
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ROUTING

Leverage maze routing to generate routing candidates
—> solve the connectivity problem

Leverage RL to fix DRC of the routing candidates
- solve the DRC problem

Leverage genetic algorithm to minimize unroutable nets and DRC numbers

—> solve the optimization problem

Genetic Maze Routed Fix DRC

Algorithm Routing design with RL
DRCs

DRC free route
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GAME OF FIXING DRC

Adding additional MO grid to reduce DRCs
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Step 0: DRC =6 Step 1: DRC =6 Step 2: DRC =3 Step 3: DRC =0
reward=0 reward=3 reward=3
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Initial Layout

FIX DRC WITH RL

anal Layout

DRCs

<

DRC Game
Env

Observation:
Routing: [HM1, WMT

DRC:  [HW, ww] /7
Mask: f‘M1, WM15 DRC RL Agent i

Probabilit
Observation Shared State
Value State
Network Value

~N

Y

/

select an action based on action probability : [H"' X W]

/
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DRC RL MODEL

Agnostic to design size

i State Embedding : .
Observation Action Probability
3 [HML \WM1] 641 6;71 HML X WML L X W

[HMl,WMl] 32 64
I R B
3x3 3%3 a3 .

- softmax ]—»

%
%
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1 <17 <17
Observation: — ||| —»
Routing: [HM!, WMT o0l b
DRC: ([HM1 WM e L
Mask: HW w1 64 64 g
<P <
;2% —> || |—> —> P State Value
v <

19
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DRC AGENT TRAINING

RL algorithm: PPO2 in stable-baselines

Training set: 10000 random maze routes for a flip-

flop cell

Generalizes to all the cells

11l Random route 1

1| Random route 2
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DRC FIXING EXAMPLE
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LAYOUT AND PERFORMANCE EVALUATION

Performance Comparison of Complex Cells

Avg. 12.7X speedup

Flop23

Flop51

NVCell2

Flop12

Proposed

Latchl

Latch?7

#Devices

Latch4

Achieved 12.7X speedup on average

120

100

80

60

40

20

#Devices

NVCell (DAC 2021)

Success Rate (%)
0.0%

NVCell2 (ISPD 2023)

87.2%

500
400
300
200
100

#Cells

Cell Area Comparison

B Smaller

Success Rate

32 42
Cell Complexity

Same

Cell Width Comparison

Smaller: 14.5%
Same: 83.3%
Larger: 2.2%

52 76

Larger

(%) Smaller Same Larger
NVCell 91.2% 11.8% 77.6% 1.8%
(DAC 2021)
NVCell2 98.8% 13.7% 80.1% 4.3%
(ISPD 2023)
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CONCLUSIONS

We can leverage ML to improve chip desigh automation productivity and QoR.

Transformer model based and generative model can be leveraged to improve the efficiency and
solution quality for EDA optimizations.

Algorithms + GPU acceleration + ML: A new EDA computing paradigm!

NVIDIA GH200 2 72-Core Grace CPU
- 500 GB LPDDR5X
400 GB / sec
L 8 4 PFLOPS Hopper GPU
anr}gchioerr;‘g:/;h; Era of Accelerated Computing L i : :‘"'_f_-:' A ——
. | 5TB/ sec

Grace Hopper Superchip

servicenow. 3e<snowflake
NVIDIA Al ENTERPRISE 4.0 nr

ENTERPRISE-GRADE GENERATIVE Al PLATFORM G"EAR ML

2. o o,
¥ XpoMmiINO rugi : + ¢ Weights & Biases

=/
=/

End-to-End, Fine-Tune to Deployment LLM Library

New Multi-GPU TensorRT LLM

4,500 Packages - 10,000 Dependencies D&ALTechnologies ewte Ubuntu BR Microsoft aWS1 Google Cloud
N—

Multi Cloud, Datacenter, Workstations oE ORACLE

SUPER \”('B. p Q Red Hat vmware mm fAAZIEI'r(;SOft ﬁf':ﬁt—i%w

Source: SIGGRAPH 2023
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