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BACKGROUND & MOTIVATION

• Optimization is one of the fundamental problems in EDA

• Goal: Improve power, performance, area, and cost (PPAC)  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔 𝑥1, 𝑥2, … , 𝑥𝑛

• The functions might be non-linear, non-convex, and discrete

• Design challenges of modern circuit design in advanced nodes

• billions of transistors

• Increasing number and complexity of design rules

• Routability

• Strict pattern rules

• ML opportunities: Improve the productivity, efficiency, and quality
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NVCELL: REINFORCEMENT LEARNING BASED 
STANDARD CELL GENERATION WITH NOVEL 
TRANSFORMER MODEL-BASED CLUSTERING

Publication: 

1. Ho, Chia-Tung, et al. “Novel transformer model based clustering approach for NVCell." NTECH. 2023 (to be appear).

2. Ren, Haoxing, and Matthew Fojtik. "Nvcell: Standard cell layout in advanced technology nodes with reinforcement learning." 2021 58th ACM/IEEE Design Automation 

Conference (DAC). IEEE, 2021.

3. Ho, Chia-Tung, et al. "NVCell 2: Routability-Driven Standard Cell Layout in Advanced Nodes with Lattice Graph Routability Model." Proceedings of the 2023 International 

Symposium on Physical Design. 2023.
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STANDARD CELL LAYOUT AUTOMATION

• Std cells are building blocks of digital design layout: AND, NOR, Flip-Flop, Adder, etc

• Layout mostly by hand today, long design turn around time for the library ( a few months) 

• Standard cell automatic layouts - Fast design turn around time, More custom cell design, Design Technology 
Co-Optimization 

GA100 – 1.7B standard cells Standard ell 
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ROUTABILITY AND PPA-DRIVEN STANDARD CELL DESIGN AUTOMATION

• Standard cell layout design automation challenges as advancing beyond 5nm

• Limited in-cell routing resource - less routing tracks (i.e., < 5 RTs)

• Design rule complexity: Increasing number and complexity of design rules + strict patterning rules

• Scalability: > hundreds of transistors cell designs

• Multi-Objective Optimization: Scalability, Routability, and high quality on PPA metrics

Routability challenges of a Latch Design in advanced node

MUX4D1

Source: https://www.imec-int.com/en/imec-magazine/imec-magazine-

november-2018/the-supervia-a-promising-scaling-booster-for-the-sub-

3nm-technology-node

Standard Cell Scaling Roadmap from IMEC

https://www.imec-int.com/en/imec-magazine/imec-magazine-november-2018/the-supervia-a-promising-scaling-booster-for-the-sub-3nm-technology-node
https://www.imec-int.com/en/imec-magazine/imec-magazine-november-2018/the-supervia-a-promising-scaling-booster-for-the-sub-3nm-technology-node
https://www.imec-int.com/en/imec-magazine/imec-magazine-november-2018/the-supervia-a-promising-scaling-booster-for-the-sub-3nm-technology-node
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NVCELL: STANDARD CELL DESIGN AUTOMATION FRAMEWORK

• Layout-Aware Transformer Model Based Device 
Clustering

• High-Quality clustering to reduce complexity, 
narrow down searching space, and assist finding 
routable solutions

• Lattice graph routability model in SA placer

• Capture the local pin density and global net 
connections

• Reinforcement learning agent for DRC fixing

• Model DRC fixing as a game to improve 
productivity and efficiency



10 

LAYOUT-AWARE DEVICE CLUSTERING

• High quality clustering should consider transistor layout: Diffusion break/sharing,  Transistor pin 
access, and Routing metal DRCs

• Reduce complexity, Narrow down searching space, and Assist finding routable layouts

    -> Transformer model-based clustering approach

Active 
Transistor

Gate

MD

M0

Global receptive field, netlist information, and device placement relations
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LAYOUT-AWARE DEVICE CLUSTERING
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TRANSFORMER ENCODER ARCHITECTURE 

Goal: Given netlist logic graph, learn the relationship between device pairs in the Layout graph
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ROUTABILITY-DRIVEN PLACEMENT

• Simulated Annealing based algorithm for placement: Swap, Move, Flip

• Routability Model: Lattice graph routability model predicts congestion and routability probability

• Capture the interactions of local pin access and global nets given the placement

Swap, move, and flip of placement sequence

Lattice graph routability model
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LATTICE GRAPH ROUTABILITY MODEL OVERVIEW

• Given: Circuit, transistor placement, and M1 Pin Placement Information

• Predict: Demanded routing resource and routability probability of each column

• ො𝑦𝑟𝑒𝑔  : demanded routing resource (hori/vertical) at each column. dim = 1 x cell columns

• ො𝑦𝑟𝑜𝑢𝑡 : routability probability at each column. dim = 1 x cell columns
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TRAINING LATTICE GRAPH ROUTABILITY MODEL
• Regression Loss Function:

• Routability Probability Loss Function:

𝐿𝑟𝑒𝑔 = −
1

𝑁
σ 𝑦𝑟𝑒𝑔 − ො𝑦𝑟𝑒𝑔

2

𝐿𝑟𝑜𝑢𝑡 = 𝐷𝐾𝐿(𝑌𝑟𝑜𝑢𝑡| 𝑌𝑟𝑜𝑢𝑡 = 𝑌𝑟𝑜𝑢𝑡𝑙𝑜𝑔
𝑌𝑟𝑜𝑢𝑡

𝑌𝑟𝑜𝑢𝑡
 , 𝑌𝑟𝑜𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑦𝑟𝑜𝑢𝑡 , 𝑌𝑟𝑜𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ො𝑦𝑟𝑜𝑢𝑡
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ROUTING

• Leverage maze routing to generate routing candidates 

  → solve the connectivity problem

• Leverage RL to fix DRC of the routing candidates 

  → solve the DRC problem

• Leverage genetic algorithm to minimize unroutable nets and DRC numbers

  → solve the optimization problem
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GAME OF FIXING DRC

Step 1: DRC = 6

            reward=0

Step 2: DRC = 3

            reward=3

Step 3: DRC = 0

            reward=3

Local

Patterns

Step 0: DRC = 6

Adding additional M0 grid to reduce DRCs
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FIX DRC WITH RL

DRC Game 

Env

DRC RL Agent

select an action based on action probability : [HM1 X WM1]

Stick DRC

DRCs

Final Layout

Initial Layout

Observation:

Routing: [HM1, WM1]

DRC: [HM1, WM1]

Mask: [HM1, WM1]
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DRC RL MODEL

Agnostic to design size

[HM1,WM1]
3

3x3 3x3 3x3 1x1

32
64

128
512

64 64 Action Probability

[HM1 X WM1]
HM1 X WM1

softmax

64 64

Pool

64 64

State Value

State Embedding

[HM1,WM1]
Observation

512

[HM1,WM1]

mask

-

Observation:

Routing: [HM1, WM1]

DRC: [HM1, WM1]

Mask: [HM1, WM1]
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DRC AGENT TRAINING

RL algorithm: PPO2 in stable-baselines

Training set: 10000 random maze routes for a flip-
flop cell 

Generalizes to all the cells

Reward history of 9 training runs

Random route 1

Random route 2
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DRC FIXING EXAMPLE
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LAYOUT AND PERFORMANCE EVALUATION

Create 100% cells in industrial standard cell library 

Success Rate (%)

NVCell (DAC 2021) 0.0%

NVCell2 (ISPD 2023) 87.2%

Layout-Aware Clustering 100%

On a difficult routing benchmark (94 cells)

Success Rate 

(%)

Cell Width Comparison

Smaller Same Larger

NVCell

(DAC 2021)

91.2% 11.8% 77.6% 1.8%

NVCell2 

(ISPD 2023)

98.8% 13.7% 80.1% 4.3%

Layout-Aware 

Clustering

100% 14.5% 83.3% 2.2%

On entire cell library (over 1000 Cells)

Achieved 12.7X speedup on average

Smaller: 14.5%

Same: 83.3%

Larger: 2.2%

Improved PPA metrics up to performance 7%, power 8%, and area 4%.
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CONCLUSIONS

• We can leverage ML to improve chip design automation productivity and QoR.

• Transformer model based and generative model can be leveraged to improve the efficiency and 
solution quality for EDA optimizations.

• Algorithms + GPU acceleration + ML: A new EDA computing paradigm!

Source: SIGGRAPH 2023
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