riscure

driving your security forward

EMBEDDED SECURITY IN A 5G WORLD

JASPER VAN WOUDENBERG

ABOUT JASPER

CTO Riscure North America Author "Hardware Hacking Handbook"

- Software security since y2k
- Riscure: SCA/FI/Hardware security since 2005
- Author since 2021
- Grey hair since 2015 becoming a father

https://www.hardwarehacking.io/

https://linkedin.com/jaspervw https://twitter.com/@jzvw

TYPES OF HARDWARE ATTACKS

Advantages Of The Reset Glitch Chip

Budget Priced \$199 installed with a 500Gig Hard drive Custom Dashboards MAME Arcade Games Homebrew Software Emulators

Can easy be installed by a 10 year old Child

HOW MUCH SECURITY DO WE NEED?

WHY DO WE NEED SECURITY AT ALL?

- Brand risk
- Monetary loss

- Health & safety
- Certification & regulatory
- National security

Internal incentives

External incentives

WHAT DOES 5G MEAN FOR CHIP SECURITY?

Attackers:

- Garage-level hobbyist
- Industry competition
- Hacktivism
- Criminal enterprise
- Nation states

Rating security:

https://www.sogis.eu/documents/cc/dom ains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3-1.pdf

HARDWARE SECURITY PROCESS

PRE-SILICON CASE STUDY:

MASKED AES DESIGN

SCA SIMULATION: SCATE

19

POWER TRACE GENERATION RUNTIME SUMMARY

AES Core	RTL Gate Count	Synthesis Gate Count	P&R Gate Count	RTL Trace Gen. Time	Synthesis Trace Gen. Time	P&R Trace Gen. Time
aes_256_serial_wd dl	20991	19038	20991	1:20:21	3:54:20	4:03:43
aes_256_serial	6808	5849	7136	0:38:23	1:52:03	2:22:33
picoaes	10663	8765	9833	0:29:38	1:48:00	2:44:35
aes_256	278800	275412	297010	1:59:06	6:34:21	12:55:57
aes_fast_mix_sub	31321	25455	27627	1:18:15	2:32:13	3:02:21
aes_sbox_scramble 2	32514	28928	31192	3:20:11	3:44:57	4:35:44
femtoaes	4274	3442	4177	1:01:53	1:50:10	2:05:47
aes_128_serial	5303	4335	5101	1:02:58	1:39:51	1:55:03

• HDL simulation of 256 traces – 12x parallel

• Dominant runtimes: place and route, power analysis

public

• Time per trace improves slightly with increased power trace count

Overview Leaky signals Leaky elements Source VCD Trace

□Select all

<pre>\$signal1</pre>	<pre>\$rank_sum</pre>	⊸sum
filter data		
test_aes_128.uut106911_	1	68.82745845829957
test_aes_128.uut03304_	2	68.82745845829957
test_aes_128.uut10690Y	3	68.82745845829957
test_aes_128.uut10691B	4	68.82745845829957
test_aes_128.uut106904_	5	68.82745845829957
test_aes_128.uut111324_	6	68.27002063177406
test_aes_128.uut03746_	7	68.27002063177406
test_aes_128.uut11132Y	8	68.27002063177406
test_aes_128.uut11133B	9	68.27002063177406
test_aes_128.uut111331_	10	68.27002063177406

« < <u>1</u> / 23 > »

Overview Leaky signals Leaky elements Source VCD Trace

⊿Sel	ect a	
------	-------	--

	<pre>\$signal1</pre>	<pre>\$rank_sum</pre>	▼ S UM
	filter data		
	<pre>test_aes_128.uut.round.sbox[0].sbe.inv.dinv1221_</pre>	1	71.20231574599406
	<pre>test_aes_128.uut.round.sbox[0].sbe.inv.dinv043_</pre>	2	71.20231574599406
	<pre>test_aes_128.uut.round.sbox[0].sbe.inv.dinv121Y</pre>	3	71.20231574599406
	<pre>test_aes_128.uut.round.sbox[0].sbe.inv.dinv122B</pre>	4	71.20231574599406
	<pre>test_aes_128.uut.round.sbox[0].sbe.inv.dinv1214_</pre>	5	71.20231574599406
	<pre>test_aes_128.uut.round.sbox[0].sbe.inv179_</pre>	6	70.70803634553815
	<pre>test_aes_128.uut.round.sbox[0].sbe.inv497Y</pre>	7	70.70803634553815
<	<pre>test_aes_128.uut.round.sbox[0].sbe.inv498B</pre>	8	70.70803634553815
	<pre>test_aes_128.uut.round.sbox[0].sbe.inv4974_</pre>	9	70.70803634553815
	<pre>test_aes_128.uut.round.sbox[0].sbe.inv4981_</pre>	10	70.70803634553815

 $\begin{array}{c} x \bigoplus m_1 \rightarrow x \bigoplus m_2 \\ ((x \bigoplus m_1) \bigoplus m_1) \bigoplus m_2 \rightarrow x \bigoplus m_2 \end{array}$

© Riscure 2021, 2022. All rights reserved.

Masking – constrained synthesis

 $\begin{array}{c} x \oplus m_1 \rightarrow x \oplus m_2 \\ ((x \oplus m_1) \oplus m_2) \oplus m_1 \rightarrow x \oplus m_2 \end{array}$

© Riscure 2021, 2022. All rights reserved.

CASE STUDY: MASKED AES DESIGN

- Implementation of masking requires only basic understanding of security
- Leakage introduced by synthesis caught!
- Smaller risk of leakage post-silicon

POST-SILICON CASE STUDY:

SCREAMING CHANNELS

Die of nRF51822

226 78 199 112 15 228 202 19 85 19 203 96 7

0.0004

/ISUS

100

time [s]

xe4\xca\x13U\x13\xcb_W\x96" * (max - avg) / 2

e1\x07-[m\x07:\x0b]\x96\xc9a\xc9

0.0002

306. 81169:5389 vac2gtvertva35tvertva35tvertva8tvertva8tvertva8v95tvertv49v

H/x86/x60/x87/x80/x68/x91/x17/x18avg + (max - avg) / 2

c8\wd4\xad\x1d\$\wd3G\xb5po1\xa5 e to avg + (max - avg) / 2 206401 % 1 80 210 41 229 7 120 91 109 7 56 219 93 156 241 97 281 41 98 210 41 229 7 120 91 109 7 56 219 93 156 241 97 281

DELL

PC

Standy after

cone,

ISC

医生生的现在分词

50008

SDR ----

(elver

nna

....

D Explore

Target with PC

Antenna

Unlock scheme used by Google Eddystone Beacons

- $f_{target} = f_{channel} \pm \lambda * f_{board}$ $f_{board} = 64MHz$
- $f_{channel} = 2.4 GHz$
- $\lambda = 2$ •
- **Encryptions off** ٠

- $f_{target} = f_{channel} \pm \lambda * f_{board}$
- $f_{board} = 64MHz$
- $f_{channel} = 2.4 GHz$
- $\lambda = 2$
- Encryptions on

Screaming Channels Traces template attack:

- a. 70,000x1 for training with a fixed random key.
- b. 33,000x1 for attacking with a fixed random key.

CONCLUSION

CONCLUSION

- Scaling of number of devices through 5g requires scaling security
- Good security is not an accident, but an engineering discipline
 - Threat model
 - Validate at every stage!
- Security is only enabled through recognition of actual risks
 - Brand, financial, health/safety, certification, nat'l security
- Chip security requires countermeasures against hardware and software attacks
- Scale can only be achieved through automation

ACKNOWLEDGMENTS

- Screaming Channels Zhenyuan (Charlotte) Liu, Cees-Bart Breunesse
 - And the authors of the academic papers
- Panasayya Yalla Threat modeling / secure design slides
- SCATE acknowledgements:
- Peter Grossman et al, Intrinsix (a CEVA company)
- Patrick Shaumont et al, Worchester Polytechnic Institute
- Shreyas Sen et al, Purdue University
- Cees Breunesse, Nicole Fern, Raj Velegalati, Riscure

Riscure B.V. Frontier Building, Delftechpark 49 2628 XJ Delft The Netherlands Phone: +31 15 251 40 90 www.riscure.com

Riscure North America 550 Kearny St., Suite 330 San Francisco, CA 94108 USA Phone: +1 650 646 99 79 inforeguest@riscure.com

Riscure China Room 2030-31, No. 989, Changle Road, Shanghai 200031 China Phone: +86 21 5117 5435 inforcn@riscure.com

riscure

driving your security forward

BACKUP SLIDES

ATTACK TREES

- Introduced by Bruce Schneier et al.
- Conceptual attack diagrams
- Different ways to reach an asset

THREAT MODELING DETAILS

PRE-SILICON CASE STUDY:

RISC-V ROM HARDENING

CPU CASE STUDY: PICORV32

Identify sensitive RTL registers

How can we flip a branch condition?

- Use picorv32 core
- Brute-force all single flips for all clocks and all registers/wires

https://github.com/YosysHQ/picorv32

```
1 void secureboot(void) {
       set_test_status(TEST_START);
 2
       debug("branch test\n");
 3
 4
5
       set_test_status(TEST_TRIGGER_UP);
 6
       char success = *(volatile unsigned char *)(UARTO_BASE_ADDE
 7
       if(success) {
 8
           set_test_status(TEST_TRIGGER_DOWN);
9
           debug("success\n");
10
           set_test_status(TEST_FI_SUCCESS);
11
       } else {
12
           set_test_status(TEST_TRIGGER_DOWN);
13
           debug("failure\n");
14
           set_test_status(TEST_FI_FAIL);
15
       }
```

16 }

TOP SIGNALS SENSITIVE TO FAULTS

H0 S0

- Reg_next_pc particularly vulnerable
- Long tail not shown here (408 signals total)

CPU CASE STUDY: PICORV32

	Vanilla	Harden RTL	Harden sw	Harden RTL + sw
Total	1386400	1540800	1386400	1540800
Exploitable faults	408	358	20	2
Exploitable signals	268	264	4	2
Detections	0	0	376	361

(this experiment is waaay to limited to conclude anything general about hardware vs software countermeasures)

CPU CASE STUDY: PICORV32

- Reducing FI was as trivial as adding redundancy
- Re-running tool allows validating various countermeasure options