Signal Integrity and Electromagnetic Analyses Techniques for High-speed Interconnects in 3DICs

Dr. Yorgos Koutsoyannopoulos

EDPS 2022

Ansys Multi-physics Pervasive Simulation

3D IC Engineering Challenges

Engineering Goal

Manage effectively 2.5D/3D Heterogeneous Integration aiming at maximizing Power-Performance-Area volumic density

Engineering Requirements

- **Explore** design trade-offs in early stage with physics insights for optimal architecture selection
- **Implement** optimal design with sophisticated helpers (routers, design-rules checkers, ...) and progressive design refinement capabilities
- Analyze thoroughly the performance against relevant operating conditions throughout the design process
- Assess chip-package to system-level electrical, thermal and structural integrities for reliable, safe and secure, semiconductors solutions
- Ensure optimal materials selection for reliability, cost and sustainability targets

Delivering Quantified Business Impact

Δ

Deep Dive on Solving On-Die Electromagnetic Solutions

Solving the Signal Integrity Problem

Target Applications of Electromagnetic Analysis in Auto/5G/6G/QC

AI Processors

Autonomous Vehicles

SoCs at VERY High Frequencies!

HBM-GPU core multi-Gbps I/O

Superconductive silicon for QC

Cloud Infrastructure Multi-Gbps networking

5G/6G Mobile Comms

Why EM-aware Matters?

Why EM-aware Matters?

Why EM-aware Matters?

• Significant deterioration of frequency response due to intra-block EM coupling

Mitigating Risks of Electromagnetic Crosstalk at SoC Level

- Ansys provides EM analysis with enough capacity and speed to address large SoC and 3DIC designs up to 3nm CMOS nodes
- Portfolio of products offers complete EM-aware design flow from concept to tape-out sign-off!

A comprehensive EM-aware Workflow for 3DICs and SoCs

Simulating Multiscale Problems With HFSS Mesh Fusion

Industry Trends in Electromagnetic Extraction

Advanced Problems in On-Die Electromagnetic Extraction

Who Should Worry About Electromagnetic Extraction?

- Almost all positions:
 - Design managers tasked with system performance
 - Package designers tasked with SI
 - CAD managers tasked with flow development
 - EM experts who advise on advanced EM topics
- Heterogenous design means each party loses some control of your part
 - All parts interact
 - Cannot afford to design in a silo anymore
 - This flow will recapture control of design
- Sign-off on circuit design with SPICE analysis is a given, but must be expanded to full EM sign-off
- Old method of SPICE only sign-off of design, and then performing EM analysis to understand failure once parts are fabricated and tested will no longer work
 - Don't simulate past failure, simulate early for future success
- Two types of 3DIC designers now:
 - Those who care about the problem now
 - Those who will care about the problem for future designs
 - Not if you will care about this, but when

SoCs Trends and EM extraction challenges

Trends

- Frequency escalation upper 5G frequency bands and sub-THz-range 6G bands
- Rapidly increasing data rates
- Even higher integration and layout density
- Small form factor packaging
 - Extensive use of redistribution layers (RDL)
- 3DIC schemes become mainstream
 - InFO, WoW, CoWoS, iCAP, etc.
- Near-threshold (low-power) design
- Increased need for automatic layout simplification

EM modeling challenges

- Increased frequencies entailing higher meshing complexity
- Layout complexity increase
 - Materials
 - Multiple transitions of dielectric layers
 - Density-based definition of electrical and geometrical values
 - Biasing (LDE) effects
 - Millions of via transitions and dummy fill
- Higher integration necessitating co-extraction of
 - Analog and digital
 - Chip and part of package
- EM modeling of structures with hundreds of nets and ports!

Advanced Fabrication Effects

- Also known as "Layout Dependent Effects" (LDE)
- Emerged at 40nm semiconductor processes; effect much more prominent at 28nm and below
- Drawn metal shapes and material parameters become dependent on the actual IC layout density
- What is going to be fabricated is NOT what is drawn in the layout
 - Width, spacing, and resistivity depend on the layout
- Affects conductor dimensions in x, y, z axes as well as material parameters (ϵ_r , R_{sh})
- Effects further exacerbated by multi-patterning
- Relative information provided by means of complex tables integrated in technology files from foundries

Images: Nanofabrication: Principles, Capabilities and Limits, Zheng Cui, Springer 2010.

Fabrication Effects Considered in Advanced nm Nodes 5, 3 and 2 nm

Category	Description	RaptorX
Conductor	Multi-patterning / Coloring	\checkmark
Conductor	ETCHING (single or multiple tables)	\checkmark
Conductor	Width dependent changes in resistivity over temperature	\checkmark
Conductor	Metal thickness variation (Resistance)	\checkmark
Conductor	Metal thickness and density bounds (Resistance)	\checkmark
Conductor	Metal thickness variation (Capacitance)	\checkmark
Conductor	Metal thickness and density bounds (Capacitance)	\checkmark
Conductor	Sidewall damage thickness variation	\checkmark
Dielectric	Constant damage thickness	\checkmark
Dielectric	Bottom dielectric thickness variation	\checkmark
Dielectric	Side dielectric thickness variation	\checkmark
Via	Via contact resistance varies with via area	\checkmark
Via	Via resistance change over temperature varies with area	\checkmark

low-K	damage	мх	damage	low-K	
low-K					

Advanced Fabrication Effects Overview

• What is drawn:

Nothing is planar, nothing is standard. Every layout is a different stackup!

• What is fabricated:

Leads up to 30% difference in resistance and capacitance!

Mechanical Reliability with Metal Dummy Fill

- Unused area must be filled by dense array of "dummy metal tiles"
 - Necessary to ensure functional and reliable chips on each silicon wafer
- Electromagnetic performance is affected by dummy fill but...
- Design complexity explodes
 - Millions of dummy tiles!
 - Even on a device level layout (e.g. spiral inductor)

Heterogenous Design w/ Silicon Interposers

- Heterogenous design allows for process selection and optimization
 - Each part of system can have an optimized process
- Incorporate Ultra high-density capacitors for power integrity
 - Interposer Capacitors (iCAPs)
- Chiplets assembled to form entire system
- Interposer allows for system assembly

Interposer Example

- Layout used is a ~5mm lane of HBM I/O with 48 signal and VSS/VDD nets
- <u>No manual layout work required</u> to simplify the design
- Layout preprocessing automatically applied by RaptorX or RaptorH
- Size is ~0.3mm x 5mm

11 signals	RaptorX		
Extraction time	5h 40m		
Peak memory	170 GB		
CPUs	16		
48 signals	RaptorX		
Extraction time	15h 2m		
	262 GB		
Реак memory	202 GB		

CSM System Signal Integrity Analysis Flow

Conclusion

- Heterogenous designs requires multidisciplinary approach to design to squeeze out the best performance possible
- Signal and power nets must be analyzed together in single EM simulation
- Many issues must be addressed for advanced silicon node sizes
 - Advanced Fabrication Effects
 - Interposer
- Need a way to analyze the different parts of the heterogenous design together
- A comprehensive and fast solution is needed for all these challenges

