IEEE EDPS 2022

CHRONOS

The Future of SoC Connectivity

The Dawn of Clockless Technology

October 5th, 2022

- The introduction of AI and ML to computing systems, paired with the widespread availability of High-Speed mobile devices, has put a lot of pressure on traditional computing architectures
- New applications require huge amount of data bandwidth both in the cloud and at the edge, directly challenging the interconnect infrastructure in every system
- The fundamental assumptions of traditional digital design are pushed to the limit requiring a different disruptive technology to sustain progress
- Fortunately, this technology already exists, and can enable high performance scalable solution for years to come

History of Computing Architectures

A Quest for Higher Performance

- Moore's Law: "The number of transistors in a dense IC doubles every 2 years"
- Dennard Scaling: "As transistors get smaller, their power density stays constant"
 - Pushed smaller geometries and higher clock frequencies for next generations
- Amdahl's Law: $S_{\text{latency}}(s) = \frac{1}{(1-p) + \frac{p}{s}}$
 - More cores as alternative to higher frequency to keep pushing performance within a limited power envelope

GPU architecture

CPU Vs GPU

CPUs:

- Good at running complex tasks
- Easier to program (sequential machines)
- Cheaper than GPUs

GPUs:

- Good at running simple tasks on large data such as matrix multiplications
- Can hide memory latency if the data fits within the internal memory

Modern GPU memory hierarchy

- Registers are the fastest memory in the system followed by L1 and Specialty Cache, L2 Shared Cache and finally the Global Memory
- The faster is the memory the smaller is the size of the memory
- Large amount of memory are required by modern inference algorithms

Another Brick in "The Memory Wall"

OPERATION DATA

- Global Memory access (up to 48GB): ~200 cycles
- Shared memory access (up to 165kb per SM): ~20 cycles
- Fused Multiply-Add (FMA): 4 cycles
- Tensor Core matrix multiply: 1 cycle
- Warp (smallest unit of threads on a GPU): 32

Interconnect is the Bottleneck

"One of the things that we have been seeing is the model sizes are exploding, no model fits in one node."

"While there is a lot of hype on deep learning accelerators, their utilization is super-low because we are busy moving the parameter data across the network because the 100-billion parameters don't fit."

Intel architecture day event, August 2020

Raja Koduri (Head of architecture @ Intel)

- Complexity of latest deep learning models is growing exponentially.
- The latest released Pathways Language Model (PaLM) from Google has 540-billion parameters
 - weights that must be multiplied over each piece of input data
- Future models for real time Imaging and Video recognition will grow even more
- Training of large models have Tensor Core utilization of ~30%
 - ~70% of the time is spent moving data around
- Inference at the edge has even tighter requirements for latency performance
 - Especially in real time applications

Market Segments

Cloud AI: Training / Inference

- 80B Transistors
- 2 Banks of 25MB L2 Cache
- 826 mm²

- Larger silicon dies to reduce memory access
- Repetitive structure
- Industry trend for next generation chip:
 - Bigger size than its predecessor more cores and more on chip memory
- Cores connected by Clocked Distributed NoC
 - Simplified router
 - Complex Clock distribution network
 - Challenging timing closure
 - Clock frequency determined by core area
 - Usually, no pipelining between routers
 - Core could run at higher speed
- Hybrid Bonding
 - Extend area beyond die size
 - Challenging timing across different silicon dies

Mobile / Edge-Computing / Automotive

- Extremely Complex SoC
- Heterogeneous System
 - Many cores and sensors
- Security required
- Dedicated Computing Units for specific tasks
 - Al Acceleration
 - Crypto
- High Throughput Requirement
 - HD-Video Gaming
- Low Latency Requirement
 - Real-Time applications 5G
- IPs connected through Clocked Distributed NoCs
 - Very High-speed clocks (↑ Throughput, ↓ Latency)
 - Difficult to close timing at top level
 - Challenging Floorplan
 - Difficult to scale

Data Center

Intel Skylake-SP 28-core

2x UPI x 20	PCle* x16	PCle x16 DMI x 4 CRDMA	On Pkg PCle x16	1x UPI x 20	PCle x16	
CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	
SKX Core	SKX Core	SKX Core	SKX Core	SKX Core	SKX Core	
DDR4 NC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	NC DDR4	
DDR4	SKX Core	SKX Core	SKX Core	SKX Core	DDR 4 DDR 4	
CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	
SKX Core	SKX Core	SKX Core	SKX Core	SKX Core	SKX Core	
CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	
SKX Core	SKX Core	SKX Core	SKX Core	SKX Core	SKX Core	
CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	CHA/SF/LLC	
SKX Core	SKX Core	SKX Core	SKX Core	SKX Core	SKX Core	

CHA – Caching and Home Agent ; SF – Snoop Filter; LLC – Last Level Cache; SKX Core – Skylake Server Core; UPI – Intel[®] UltraPath Interconnect

Server Chip

- High-Bandwidth High-Throughput chip
- Mesh architecture
- High Frequency
- Long interconnect (Horizontal)
- Challenging interconnect design

- Die area is determined by other factors
 - Die size close to reticle limit to maximize the # of High-Speed IOs at the boundary
 - Low Latency requirements
 - Very long interconnects

A dark time for Interconnect ...but the sun is rising

Traditional Synchronous Pipelining:

- Extremely complex clock distribution for long/wide busses
- Cannot achieve the required low latency
- Challenging timing across PVT and modes
- Suffers from degradation for long distances and high freq.

Source-Synchronous:

- Difficult to deploy on large scale (Semi-Custom)
- Suffers from degradation for long distances and high freq.
 - Clock Skew and Duty Cycle
- Designed and operates in WC

Clocked Distributed NoC Mesh

- Massive clock distribution
- In order to achieve low latency requires high-speed clocks
- Nightmare to close timing at top level
- Latency and Throughput are correlated

Throughput

Latency

Why Clockless Now?

Clockless technology benefits

- Performance
 - Fast (Low-Latency, High-Throughput)
 - Self clock gating (No clock distribution)
 - Reduced footprint (Serialization Technology)
 - Scalable (not limited in length)
- More resilient
 - Designed for WC, but operates on TYP
 - No Hold-Time Violation possible
 - Resilient to PVT
 - Low EMI
- Ideal for Heterogeneous Systems and High-Performance Switches

Historic shortfalls

- Deployment
 - No Standard flow integration
 - Proprietary Custom Tools and Flow
 - Complex and error prone sign-off
- Post silicon issues
 - Custom Dynamic logic cells
 - Lack of test capabilities (Std. test and HVM)
- Poor power and area
 - QDI Encoding doubles the wires (larger Area)
 - Higher Power

Once shortfalls are eliminated -> Perfect match for current requirements

Technology and Product Offering

Chronos Technology is an advanced fabric built on the following pillars:

Products:

Link

Clockless Point-to-Point Interconnect

- Competitive Advantage:
 - Best in class latency & throughput
 - Advantage grows at low voltage
 - Bus width serialization technology
 - Enables tradeoff between area and perf
 - Implementation via industry standard tools
- Readiness: Available now
 - Internal TO (7nm TSMC) (Sangiovese)
 - Verified on Silicon with Tier1 Cust. TO (5nm)
 - Customer currently defining product intercept

AI NoC

Clockless NoC for AI Accelerators

- Competitive Advantage:
 - Addresses latency bottle-neck in Al
 - Each Compute Unit can truly be independent
 - Enables improved power/perf optimization
 - Bus width serialization technology
 - Enables possible mesh area reduction
 - Low Power
- Readiness: Available Q1/23
 - Development and verification in progress

Sangiovese Test-Chip

TSMC N7 CMOS LOGIC Fin FET ELK Cu, 1P13M, HKMG, 0.75/1.8V H300 ULVT/LVT Chronos cells used in the design Wafer: T8U996.00#01 Dies mounted on interposer and wire-bonded to standard QFN package

Demo Package available (environment + sim + board)

Specifications

- Features: 2 PLLs, multiple voltage domains, programmable correlated and uncorrelated noise generators
- Generator and Checker able to produce pseudo-random and custom-pattern data and controls (Valid, Ready)
- Different Chronos links (with different PPA optimization)
- Channel lengths: 10mm
- Buses data width: 64bits
- Latency <6.5ns</p>
- Throughput maintained down to 550mV in the pipeline, saving ~49% power
 - Power Efficiency: 0.047pJ/bit/mm *

Silicon Results: Chronos vs Source Synchronous

Technology: 5nm FinFET

Specifications	High-Speed	Medium-Speed	Low-Speed	
Frequency	1.563Ghz	781MHz	195MHz	
Serialization Ratio	x2	x4	x16	
Effective Channel Speed	3.126GHz	3.124GHz	3.12GHz	
Link Length	10mm	10mm	10mm	
Voltage Domains	5	5	5	
Bus Data Width	64bit	64bit	64bit	

Results (NN)	0.75V	0.58V	0.75V	0.58V	0.75V	0.58V
Throughput Advantage	46.6%	115%	46.5%	99%	46.6%	98%
Latency Advantage	30%	40%	54%	63%	39%	58%
Bus Width Reduction	1.2%		48.1%		86.8%	

Best in class Latency: 7.6ns (over 10mm @ 0.75V)

> Includes serialization, deserialization and synchronization

The Sun is Out

- Traditional clocked interconnect technology is facing significant challenges in modern computing architectures
- Large die area, high throughput and low latency requirements are demanding a flexible new solution
- Clockless technology is the ideal fit for new systems, enabling
 - High-Throughput
 - Low-Latency
 - PVT resilience
 - Low EMI
 - Easy of Deployment
 - Tool/Flow integration (No need to retrain the team)
 - Advanced testing capabilities

- EDA vendors and design houses can help accelerate the transition by
 - Expanding the std-cell libraries to include common clockless elements
 - Integrating Relative Timing Constraints (RTC) within the flow
 - Enabling timing analysis of logic loops within the data-path
 - Integrating test vector optimization with custom data encoding

"The electric light did not come from the continuous improvement of candles"

(Prof. Oren Harari)

Join Us on the Clockless Revolution!

Chronos Tech LLC.