

Modeling Photonic Integrated Circuits in Synopsys Photonic IC Platform: OptoCompiler

Custom Design and Electronic-Photonic Cosimulation

Jigesh K. Patel Product Manager - Photonic Solutions 5th November 2021

Outline

- Photonic Toolset and Photonic IC Design Platform
- Custom Photonic Design
- E/O Co-design
- Summary

Photonic Toolset and Photonic IC Design Platform

Photonics and PIC Technologies Emerging in many Areas

current

Key Challenges In Photonic IC Design & Manufacture

For the Tool	For the Designer	For the Foundry						
 Photonics has "RF-like" behavior Needs curves, not corners Uses waveguides, not wires Unique physics and signal attributes 	 Historically the "domain of experts" Electrical models and simulators are inadequate for photonic devices Manual layout Fragmented flows → Low Productivity → Human Error 	 Photonics process and PDKs are immature Curvy data impacts layout, OPC and mask-prep → Low Performance and Yield 						

Synopsys Photonic Design Automation Solutions

Increasing quality of results, reducing errors and improving efficiency of photonics design

Synopsys provides Industries first Unified E/O co-design Solution

OptoCompiler – interactive design cockpit

- Complete custom/AMS capability
- Photonic-aware layout synthesis
- Exclusive Photonic Design Features
 - Seamless abutment
 - Photonic auto-align
 - Assisted Waveguide Routing
- Photonic DRC & LVS with IC Validator

OptSim – photonic circuit & system simulation

- E/O co-simulation with PrimeSim

Photonic Device Compiler – device design

- E/O co-simulation with Sentaurus TCAD
- Automated photonic PDK and library development

The industry's **only** <u>unified</u> electronic & photonic platform

OptoCompiler provides PDK driven Schematic Driven Layout (SDL) Design Flow

- 1. Schematic capture and simulation
- 2. Layout implementation
- 3. Back annotation and re-simulation
- 4. Design rule checking and layout versus schematic verification

OptoCompiler uses modern and easy to use design environment, familiar for IC designers

OptoCompiler provides interactive layout with productivity features for photonics

OptoCompiler provides back annotation to enable post layout verification

OptSim enables seamless circuit and system simulation and analysis

Custom Photonic Design

Photonic Device Compiler supports Photonic device design, PDK and custom library development

Photonic Device Compiler supports Photonic device design, PDK and custom library development

Example: Tunable Lattice Filters for Detector Array

 Cascaded MZI coupler elements can be tuned to different wavelengths via adjustable delay length d

spectra ranges," Optics Lett., vol. 28, No. 18, pp. 1663-1664, Sept. 2003.

Simulated Filter Transfer Function vs Delay (d) Different cascade 10 10 50 100 150 200 50 100 150 d (nm): 0 d=0 50 100 150 200 designs can be used as 0 0 Power (a.u.) optical filters before -10 -10 detectors to create a -20 -20 multi-channel detector -30 -30 1400 1440 1480 1520 1360 1400 1440 1480 1360 1520 Wavelength (nm) Wavelength [nm]

array

Example : Tunable Lattice Filters for Detector Array

Device Overview

- The Building Block (BB) to construct the device is a single MZI coupler shown on the right.
- Synopsys Photonic Device Compiler used to generate transfer function for BB.
- Filter formed by cascading several coupler BBs
- 6-stage cascaded MZI couplers are used to balance ER and bandwidth requirements
- Resulting device:
 - Is tunable: Adjusting delay line length (d) changes dropped wavelength
 - Is small: A 2.5µm bend radius \rightarrow overall length less than 100µm
 - Has a large free spectral range (FSR)

Component Model of Single Coupler (BB)

Generated S-Matrix for the BB

Example : Tunable Lattice Filters for Detector Array

Circuit Schematic and Layout: OptoCompiler

• Schematic

Layout

Example : Tunable Lattice Filters for Detector Array

OptSim Simulation Results (Using S-Matrix data from FullWAVE)

- Left: Through and Drop port Spectrum with FSR ~100nm+ (at delay length d=0)
- Right: Drop port Spectra for various delay line lengths

Example: Tunable Lattice Filters for Detector Array 4-channel Detector Array using both Foundry and Custom PDK Elements

- 6-stage cascaded MZI couplers are used to balance ER and bandwidth requirements
- Adjustable delay lengths d = 50, 100, 150, and 200 nm accommodate center channels of 1497.6, 1511.8, 1526.0, and 1540.2 nm, respectively
- Standard AIM Photonics PDK elements provide input coupling, signal splitting, and photodetection

Example: Tunable Lattice Filters for Detector Array 4-channel Detector Array Eye Diagrams

SYNOPSYS[®]

٠

۲

٠

Example: Tunable Lattice Filters for Detector Array 4-channel Detector Array Layout

 Custom photonic components behave like foundry PDK components and follow the same schematicdriven layout (SDL) flow

E-O Co-Design

Electronics-Photonics Cosimulation

- Motivation:
 - Many applications require electronics to drive photonics (e.g., transceivers)
 - The transition from pluggables to co-packaged optics is inevitable

- Modeling bidirectional photonic circuits as electronic circuits (Verilog-A,...) is too much pain with too little gain
- Commercial electrical circuit simulators and photonic circuit simulators are mature today (i.e., no need to model photonics as electronics unlike in past)

OptSim: Electronics-Photonics Cosimulation

• Philosophy:

- Provide intuitive and seamless E-O schematic creation (Electrical + Photonic devices in the same Schematic)
- Free designers from manual, error-prone cross-domain interventions

Testbench: Setting up E-O Co-Simulation

- A testbench is a simulation setup for the schematic under test
- PrimeWave Design Environment enables management of testbenches

Satur Variables Outru	ta Simulation Posulta	î 🖤		ibrary Manager		CFM_MZI_OptSim	Lib sc 🔟 📚	DF	M_MZI_OptSimLik	2	ģ	Job Mo	onitor		DFN	I_MZI	_OptSimLib - R	2 +			
		Session	Setu	p Variables Ou	tputs Sim	ulation Results To	ols Window Help														
니다 Design		i dan da	A A A Tasthassh (States Ont Circ default History Daint 1						PrimeWave Design Environment												
🔍 Show Design	Ctrl+D	i i i i i i i i i i i i i i i i i i i																			
Simulator	Shift+S	Statue	Simula	ation Completed		OntSim Joh	s: 40 (Data Points:	10)												History	
Environment Options	E	Status:	Sinua	ation completed		optsini jobs	s: 40 (Data Points:	+0)												HISLOTY	
👹 Analyses	A			Variable		•	Value		Analysis	Туре	En	n					Value				
Model Files	М	temp				25	25			Manta Carl	✓ Total:2, e		nabled: 2		1						
Include Files		L1_um				100.0			Monte carlo Monte carlo V Iteratio tran Iteratio				: 20 Star 1 E1 0 Poir	t iteration:	5 Patte	rn Le	angth: 7 Bandwid	th: bitRate !	2^nointsP	erBit Ti	
3DIC Setup		L2_um				120.0		- I '	cran	cruit	·	Dic Hater .	1210100	ico por bici	51 4110		angen / Daname		2 pointor		
💿 External Images		filter_c	filter center nm						Analysia												
🍪 Convergence Aids	С	Click to	o add	Dosid	n Va	riables			Ana	iysis											
🐳 Stimulus Generator				Desit	jii va	Hapies															
🚴 Simulator - 1	estMC/DFM_MZI_	OptSi	e Set:	default 🔻																	
	Simulata		ite	Specifications	Scatter	Histogram 0-0	Parametric Redu	ction	1												
	Simulato	л 5		specifications	Julie	riistogram Q-Q	- arametric riedu	cuon								44					
Simulator	OptSim	-	Ou	tput 🔻			Expr	essior	۱					Value		***	Plot Ty	ype	Plot Color		
Sindacon	PrimoSim				b(/I1/input	:#1)							***		1	1	auto			✓	
Netlist Format:	FineSim				oc_opt_po	w(atten0ut, /I9/outp	ut#2)						**		V	∢	scatter			v	
Poculto Directory	FineSim VCS				oc_opt_pow(filterOut, /I7/output)						**	🖌 🖌 histogram						✓			
Results Directory:	OptSim				oc_opt_po	w(m1, /I7/output)	Probe	S	at node	s and	d r	nets	**		1	∢	scatter			/	
To all south the second	Spectre		b add															-1015			

Results Analyzer and Waveform Viewer: E-O Waveforms

Summary

Synopsys' Differentiators Enable Fast & Accurate Results

"With the Synopsys platform, we were able to reduce the time from schematic entry to final test chip layout by nearly 4X over legacy tools," said Dr. Radha Nagarajan, CTO and SVP, Platforms at Inphi Corporation. "Due to its productivity features and ease of use, we have successfully used OptoCompiler for tape-outs."

"Rockley's unique photonic chipset technology with silicon photonics at its core is driving the growth of integrated optical components in healthcare, machine vision and data communications," said Andrew Rickman, chief executive at Rockley. "The PDA platform Rockley has created by utilizing OptoCompiler allows our engineers to define, simulate, lay out and verify Photonic ICs quickly and efficiently to meet our quality and schedule goals. Synopsys' technical support has been instrumental in ensuring Rockley met its tape-out goals. We look forward to additional efficiency gains by expanding our use of Synopsys' Photonic Solutions tools."

Thank You