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History of Machine Learning

Before 1950s

•Statistical 
methods are 
discovered and 
refined

•Bayes Theorem

•Least square

1950s

•Machine learning 
defined by 
Arthur Samuel

•Games such as 
Checker and Tic & 
Tak

1960s

•Bayesian methods & 
probabilistic 
inference in ML

•Limitations of neural 
networks

1970s

•AI Winter

•Automatic 
differentiation 
(AD) of discrete 
connected 
networks

1980s

•Knowledge 
driven machine 
learning

•Geff Hinton’s 
rediscovery of 
back prop

•RNN & RL

1990s

•Data driven 
machine learning

•Support Vector 
machine & 
Random forest

•IBM Deep Blue 
beats world 
champion

•RNN and LSTM 
become popular

2000s

•Kernel methods 
& Unsupervised 
learning

•Torch library is 
born

•ImageNet 
conceived 
accelerates 
modern ML and 
Computer Vision

2010s

•Deep Learning 
becomes 
widespread

•Kaggle 
competition

•Google Brain 
identifies animals 
in YouTube

•DeepFace from 
Facebook

•AlphaGO beats 
best Go player

•NLP takes a stride
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• Data storage is cheap

• Almost infinite compute capacity with race in GPUs/TPUs 

2010-Present: Machine learning

• Open source and ML Frameworks and datasets

• Online paper repos through Arxiv

• Growing community through top AI/ML conferences

ComputeData

Machine  

Learning

Open source datasets which accelerated the pace of research

Open source ML frameworks that survived test of time
Top ML conferences

©2021 ANSYS, Inc. / Copyright



2010-Present: Successful ML applications
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AI/ML is not 
living up to its 
hype

− Does deep 
learning always 
have overfitting/ 
generalization 
problem?

2010-Present: Notable failures of ML
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• Towards accuracy, explainability and 
generalizability

• Big data -> Useful data

• Evolving trends

• Data efficient learning

• Self-supervised learning

• Unsupervised learning
• Multi-task learning

• Multi-modal learning

• Meta learning

• From induction to deduction

• Imposing hard constraints

• Combining Bayesian methods into deep learning

• Learning without forgetting & building a knowledge 
graph

• Optimize model performance by compilers & hardware

Machine Learning in new age: 2015 - Present
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• Lack of data causes 3 problem?
‐ Generalization

‐ Imbalance

‐ Optimization

• Ways to deal with them
‐ Read the article

Data efficient learning

SMOTE: Synthetic Minority Oversampling Technique
NTM: Neural Turing Machine

https://towardsdatascience.com/breaking-the-curse-of-small-data-sets-in-machine-learning-part-2-894aa45277f4
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Data efficient learning..

• Semi-supervised learning
‐ Self training with noisy student
‐ Improves robustness and accuracy of 

ImageNet state of the art model
‐ Teacher starts off overfit turns gradually into 

robust general-purpose model

https://arxiv.org/abs/1911.04252

• Self-supervised learning
‐ Future of representation learning

‐ Data augmentation: crop, rotate, noise 

‐ Learn similarity in z space: Minimize redundancy 
between embedding variables and maximize info 
content between z vectors

LeCun: https://arxiv.org/abs/2103.03230
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• Numerical methods have been there for last 50 yrs
o Approximations are there but trust is well established

• Speed is desirable but accuracy is indispensable

• Physics needs hard constraints to be satisfied
‐ Everywhere in the domain, say observing a random point, plane or a region of interest

• Typical simulation models
‐ 100-1000 parts

‐ 1000 connections

‐ One or more physics with a couple of idealizations/physics models 

• Commercial simulation software such as ANSYS is not only solving PDEs but
o Constraint equations

o Heuristics

o Physics models

o Couplings across physics

o Many more..

Realities of Simulation
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AI/ML Challenges applied to simulation 

• Scaling data driven methods to different 
orders of geometric & physics complexities
‐ How to move from specific application to strong 

generalizations?

• Accuracy is key, don’t want to sacrifice or 
trade with speed

• Even with zillions of simulation and access to 
data, problems can be unique?

Simplistic

Stochastic
Data Hungry
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Ansys Perspective: Key Takeaways

• We cannot replace PDE solvers in near term
‐ An initial cheap solution is critical to fix the intractable input space

‐ Large nonlinearities always a learning challenge, use the solvers first

‐ Map coarse solutions to high fidelity solutions using ML
• Several reputed papers on this: Google, Tech Univ. Munich, Caltech, Princeton

• Better software engineering & owning data distribution problems
‐ Scale by domain decomposition and focus on building blocks

‐ Reduce redundancies in datasets and data augmentation to create quality

‐ Smaller networks, focus on scalable training & accuracy/Num of parameters

• Local learning is key for strong generalization, and it solves data problem too
‐ One shot, zero shot learning with few simulations

• Learning with differentiable geometry, physics, rendering etc.
‐ Use it with caution!  

‐ Very nonlinear physics such as rigid body dynamics, explicit simulations are challenges for ML

‐ Feature extractions to handle nonlinearities: Koopman Operators, Fourier neural operators etc.
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Ansys Perspective: Key Takeaways..

• Imposing hard constraints into the learning 
process always helps
‐ Pinn family of Networks: Physics based multi-objective 

losses are great!
• Original Pinn Papers

• Accelerating learning with data losses followed by physics-based 
losses for fine tuning: DeepONet

• Nvidia SimNet

‐ Surrogate networks
• Solver in loop: Predictor-corrector networks

‐ Output layer-wise outputs in networks
• Ansys topo project: Volume constraint

‐ Implicit constraints in networks: Deep equilibrium 
models
• Zico Kolter etel: https://arxiv.org/abs/1909.01377

• Equality and in-equality constraints into networks: 
https://arxiv.org/abs/2104.12225

• Optimizing/Solving during test time
‐ Solve/optimize after initialization from actual solver
‐ Don’t solver from scratch: Ansys ML based PDE Solver

Nils, Tech Univ of Munich, Neurips 2020: https://arxiv.org/abs/2007.00016
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Assemble,

Solve in a

reduced 
vector

space

Physics or

geometry 
decompose 

Physics or 
geometry

encoding

Physics 
compatible 
constraints 

Discretization 
methods

Operators

Multi-
Physics

PDEs

Structured & 
Unstructured 

data• Army of learned networks 

• A controller/assembler to bring on-board 
one or many learning models based on 
context

• Must solve again to make sure problem 
specific aspects covered during inferencing

• Not a typical inference, optimization 
during inference time

Key Takeaways: Ansys ML Perspective..
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Research Projects



• Goals: Accelerated turbulent flow computation (10x-
100x) in Fluent for industrially-relevant scenarios

‐ Google to build an accelerator for Fluent where high-fidelity 
solutions can be solved on a coarse mesh

‐ Google published Pnas Paper: Learning interpolation from high 
fidelity low fidelity for 2D turbulence

‐ Use Fluent UDFs 

• Interpolation based scheme simply does not scale to 3D
‐ Filters increase(2n^2.K^n) from 128 to 1152!

• Looking at learning corrections using a predictor-
corrector network(Nil’s 2020 Neurips)

Faster 3d Turbulence
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‐ Publications:
▪ CMAME journal: DiscretizationNet: 

https://arxiv.org/abs/2005.08357

▪ ICLR workshop on numerical methods: 
https://simdl.github.io/files/22.pdf

• Use-cases:
‐ Static & Transient PDEs

‐ Lid driven cavity and external flows over 
objects of different shape

‐ Industrial Usecase: System level chip thermal 
simulation tightly coupled CHT with natural 
convection

A new ML Solver in latent space

Learn locally 
consistent 
solutions

Divide into finer voxel

Each voxel can be 
8*8*8 

point voxels 
or more

Generate solutions on 
each finer voxel

Reiterate until convergence

Voxelize

• Motivation:
• Geometries and physics have lots of patterns!
• Do we need to solve from scratch?

• Key insights:
• Generate solutions, a priori, at a coarser resolution
• Breaks and learns solution on a finer resolution
• Assembles the finer solutions
• Scalable: geometries or complex physics
• 50-100x speedup
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3-D 
Computational 
Domain on cut 
plane

Velocity 
inlet

Pressure 
outlet

Velocity

Cylinder

• Flow over a cylinder, unsteady RANS
▪ Flow Reynolds number = 200
▪ Heated cylinder
▪ ML-Solver runs 40x-100x faster

Temperature

ML Solver: Transient PDEs

©2021 ANSYS, Inc. / Copyright



Ansys Fluent

ML-Solver

Velocity Streamlines Center-plane velocity contour

Ansys Fluent

ML-Solver

• Results for lid driven cavity with top wall moving 
at constant velocity

• Verification for unseen cases of Re = 200
• Speed comparison below for 2.2 million cells 

using 1 CPU
• Time per iteration

• ML-Solver: 1.8 seconds
• Ansys Fluent: 40 seconds

• Overall convergence
• ML-Solver: 36s
• Ansys Fluent: 5000s

• Acceleration:
• x139

ML Solver: Lid driven cavity results in Fluent
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• Goal: Develop ML-Solver in the reverse mode 
(adjoint solver) to optimize engineering designs 

• Forward solve using ML-Solver works well
▪ Flow over arbitrary objects  

• Adjoint mode needs more work!

ML Solver: External flow over objects
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System level model 
(~0.163  m3)

Chip package 
(~0.0323 m3 with 

heat sink)

Package cross section

Si Substrate

Interconnection Layer

Insulation layer

Simplified 3-layer model Power map example 

• Tightly coupled temperature and velocity 
coupled CHT with natural convection

• One way coupling, forced convection
‐ Large eddy simulation to capture turbulence

ML Solver: Electronics chip packaging simulation

Si substrate 2D Power Map 

Solder bumps and underfill

Pkg substrate
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• A small subset of system variables: Power map, ambient temperature, 
material properties(K, Cp, rho) of Die, package, PCB, heat sink 
geometry(base and fin thickness, # of fins), velocity etc.

• Power map: 4 million sources (10um x 10um) for a 2cm x 2cm chip, each 
source can take continuous values in given range (e.g., 0 to 10mWatt)

• Physics involved: Heat transfer in solid and Fluid, Navier–Stokes's 
equations …

• Goal: Given any power map applied on a chip, predict the solutions for T, 
u, v, w, p

• Expected ground truth solutions (T)

Die cut planeDie topPCBSystem

ML Solver: Electronics chip packaging simulation, Problem setup

Sample power maps 
(representatives of 
real applications)
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• ML solver prediction for one test case

X-velocity Temperature

Z-velocity Pressure

ML Solver: Electronics chip packaging simulation, preliminary results

• Line plot comparison for 
the same case

Temperature at center plane 

Velocity at center plane
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Fast Transient Thermal Solving for Architecture Level What-if Analysis 

Physical data
(Chip + block bbox)

Selected BC from 
Estimated Pkg/Brd

Transient Power 
Scenario

(from Emulator/PA or w/ 
block functional Modes)

Architecture
What-if

Steady State/
Transient Thermal 

profiles

Reporting : Top 
Ranked Thermal 
Hotspot in Time

Block Power 
Model

t=0 t1 t2 t3

Te
m

p
er

at
u

re

“Model-based Digital Twin for Anomaly Detection of On-chip Transient Thermal Response”, A. Kumar, N. Chang, et al., DesignCon 2021

Thermal Artist, Fast architecture level what if thermal analysis
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• Identified constraints of encoding for numerical simulations
• Improved the state of the art from research community
• Generalization: Trained to SpaceClaim simple parts scaled to unseen 2D/3D 

geometries

Drag minimization

Encoding geometry
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Ground truth
Reconstructed
surface

Reconstructed surface
with compression

Ground truth (top) and reconstruction (bottom ) of a GE 
turbine engine

Encoding geometry: Latest 3D Results
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Learning topology optimization
• Motivation

‐ Topology optimization
• Numerical technique to distribute the material inside a design region to have optimal properties and satisfies the prescribed loads, design and 

manufacturing constraints
• Traditionally, solvers developed since 1989 [1] use minimization of elastic strain(called SIMP) energy of a part for a given total weight and 

boundary conditions specified.

‐ The technique is general purpose and scales to other physics but extremely time consuming for full fidelity.

• Learning the relationship between the strain energy distribution and evolving shapes
‐ 3d dataset available with evolving densities and final density for various configuration of loading & geometries
‐ Challenges: Generalization to new geometries outside of distribution

ElemDensity = f(ElemStrainEnergy)

Learn f by Deep Learning 

s.t: some protected locations

https://arxiv.org/pdf/2012.05359.pdf 
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• High level API for managing training, ML models, 
debugging, visuals, and evaluation

• Thin web-client, Jupyter Labs style

• Use from a library of templates

• Create images based on a base docker image 

• Tensorflow/PyTorch backends

• C++ and Python

• Auto-scale training with GPUs in DGX cluster

• Embed ML Dlls into product or use ML as web service

New ML Framework
Accelerate ML dev productivity

Trainer EvaluatorDataStreamer Model

Jupyter Lab

Tensorflow, Pytorch, Scikit-Learn

Python, C++

Imports Components
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DataPhysics

Hybrid 
Physics/Data 

Model

AI/ML

Full Integration

Hybrid digital twin

Motivation:

• Parameter calibration for equipment health monitoring

• Difficult to model system degradation using  only physics alone

• Can we use the real-time data collected to reduce the residue in physics-based 
modelling?

Methodology:

• Use system characteristics to create a physics model

• Estimate the parameters using physics model

• Integrate the estimation with data-based model to get more accurate parameter 
calibration

Current projects and contribution:

• Flowserve:  Delivered noise fitting module. Working on Fusion model algorithm 
(More accurate functionality based on Machine Learning algorithm)

• Boeing: Preprocessing the raw data. Establishing baseline using Deep Learning 
based Neural Net models

Future directions:

• Software integration for internal release

• Deploy these models as cloud-based microservice to the customers

• Add more functionality and improved models in subsequent updates
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Deep Material Network

• New ML based network to handle multi-scale composite 
materials

• Fixes material history dependencies without loss of physics

• Several orders(1000x) faster than current model based 
multi-scale method
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Additive Manufacturing, ML accelerated fast thermal strain
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