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History of Machine Learning

Before 1950s

eStatistical
methods are
discovered and
refined

*Bayes Theorem

eLeast square

1950s

*Machine learning
defined by
Arthur Samuel

eGames such as
Checker and Tic &
Tak

1960s
eBayesian methods &
probabilistic

inference in ML

eLimitations of neural
networks

1970s

*Al Winter

e Automatic
differentiation
(AD) of discrete
connected
networks

1980s

eKnowledge
driven machine
learning

oGeff Hinton's
rediscovery of
back prop

*RNN & RL

1990s

eData driven
machine learning

eSupport Vector
machine &
Random forest

*|BM Deep Blue
beats world
champion

*RNN and LSTM
become popular

2000s

eKernel methods
& Unsupervised
learning

eTorch library is
born

eImageNet
conceived
accelerates
modern ML and
Computer Vision

2010s

*Deep Learning
becomes
widespread

eKaggle
competition

eGoogle Brain
identifies animals
in YouTube

eDeepFace from
Facebook

*AlphaGO beats
best Go player

*NLP takes a stride
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2010-Present: Machine learning

» Data storage is cheap

* Almost infinite compute capacity with race in GPUs/TPUs spmeis  BEBRRARRIREENS
IMAGENET i 2§ iR

Open source datasets which accelerated the pace of research

* Open source and ML Frameworks and datasets
* Online paper repos through Arxiv
* Growing community through top Al/ML conferences R e

ICML B __ l" O PyTorch

ICLR Tensor
.  + e\
International Conference s | ldNS

On Machine Learning

Open source ML frameworks that survived test of time
Top ML conferences
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2010-Present:. Successful ML applications

INTELLIGENT AGENTS,
NATURAL LANGUAGE
PROCESSING ETC.

Virtual Assistant

Machine
eCommerce

CUSTOMER .
SUPPORT, Learning
PRODUCT
RECOMMENDATION

, ADVERTISING,

Healthcare

DRUG DISCOVERY,
DISEASE DIAGNOSIS,
ROBOTIC SURGERY

Applications

Predictive
SENTIMENT ANALYSIS, Political md'[:
FILTERING SPAM ETC. m‘,,:],]ﬂ;"f],.&. POy

A,  PREDPOL
VOTE

A4

\. 9 ERA A
: Facial recognition

[y | .—- Machine Learning
el ‘ Applications

Survelllance

SAFETY
MONITORING, amazon

#—— AIR TRAFFIC

CONTROL ETC.

.

J Go gle Ads

\
\

Autencmous

ALGORITHMIC TRADING, Personal assistants:
PORTFOLIO MANAGEMENT,
FRAUD DETECTION

nteligence
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2010-Present: Notable failures of ML

These famous faces have
been

by face recognition tech.

- Does deep
learning always
have overfitting/

SpOt demo j generalization
' problem?

}Q'Cohonamuya.m

4 };

< .
o L —— -
\—b—- ! m
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Machine Learning in new age: 2015 - Present

e Towards accuracy, explainability and

generalizability Accuracy vs. Explainability

* Big data -> Useful data

o EvoIving trends Learning Techniques (today) Eigloatiigit;ill)ity
* Data efficient learning Neural Nets _
* Self-supervised learning Deep g o
* Unsupervised learning iy § O .
Multi-task learning o o %
Multi-modal learning = a £
VM Explainability

* Meta learning

* From induction to deduction

* Imposing hard constraints

* Combining Bayesian methods into deep learning

* Learning without forgetting & building a knowledge
graph
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Data efficient learning

* Lack of data causes 3 problem?
- Generalization

Imbalance

- Optimization

* Ways to deal with them
Read the article

¥ | ack of Generalization 8

I

2)GAN

Data Generation - 3) Semi-Supervised

S rops
Data Augmentation d 2

3) Brightness etc

Regularization
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" Difficulty in

Data Imbalance

Optimization

Ensembling

Change Loss Function

Balance the dataset [

Transfer Learning
SMOTE: Synthetic Minority Oversampling Technique

NTM: Neural Turing Machine

Problem Reduction

1)Zero shot 2) One shot
3)NTM

Learning with Less
data

Better optimization
Techniques

1) Meta Learning

https://towardsdatascience.com/breaking-the-curse-of-small-data-sets-in-machine-learning-part-2-894aa45277f4

Copyright
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Data efficient learning..

* Semi-supervised learning * Self-supervised learning

- Self training with noisy student - Future of representation learning

- Improves robustness and accuracy of D S :
- Data augmentation: crop, rotate, noise
ImageNet state of the art model & P

- Teacher starts off overfit turns gradually into II;earn smﬂar;)ty(;(rj\-z spacg:bl\l/lmlmge reqlupdapcfy
robust general-purpose model etween embedding variables and maximize info

content between z vectors

steel arch bridge canoe
\ v Py l - Distorted Represen-
2 ‘ : . images Net  tations
\ \ S
Train teacher model ‘ Infer pseudo-labels f() }—’ Z"‘
with labeled data ) on unlabeled data L — \
. «
backprop.
A i
Dat nentation Trai 1 >— =
ala augmentato rain equa -0r- o —
" P larger student model Make the student a ’ f 6 [—*Z 5 /
OP¢ with combined data new teacher g
Stochastic depth and noise injected / ) backprop.
https://arXiV.Org/abS/1911.04252 LeCun: https://arXiV.Org/ab5/2103.03230

\nsys
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Realities of Simulation

* Numerical methods have been there for last 50 yrs
o Approximations are there but trust is well established

» Speed is desirable but accuracy is indispensable

* Physics needs hard constraints to be satisfied
- Everywhere in the domain, say observing a random point, plane or a region of interest

e Typical simulation models
- 100-1000 parts
- 1000 connections
- One or more physics with a couple of idealizations/physics models

 Commercial simulation software such as ANSYS is not only solving PDEs but
o Constraint equations
Heuristics

o
o Physics models

o Couplings across physics
o

Many more..
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Al/ML Challenges applied to simulation

e Scaling data driven methods to different

orders of geometric & physics complexities
How to move from specific application to strong
generalizations?

* Accuracy is key, don’t want to sacrifice or
trade with speed

* Even with zillions of simulation and access to
data, problems can be unique?



Ansys Perspective: Key Takeaways

We cannot replace PDE solvers in near term

- Aninitial cheap solution is critical to fix the intractable input space

- Large nonlinearities always a learning challenge, use the solvers first
- Map coarse solutions to high fidelity solutions using ML

* Several reputed papers on this: , , ,

Better software engineering & owning data distribution problems
- Scale by domain decomposition and focus on building blocks

- Reduce redundancies in datasets and data augmentation to create quality

- Smaller networks, focus on scalable training & accuracy/Num of parameters

Local learning is key for strong generalization, and it solves data problem too
- One shot, zero shot learning with few simulations

Learning with differentiable geometry, physics, rendering etc.

- Use it with caution!

- Very nonlinear physics such as rigid body dynamics, explicit simulations are challenges for ML
- Feature extractions to handle nonlinearities: Koopman Operators, Fourier neural operators etc.

Y ANSyYS


https://arxiv.org/abs/2102.01010
https://arxiv.org/abs/2007.00016
https://arxiv.org/pdf/2010.08895.pdf
https://arxiv.org/abs/2005.06549

Ansys Perspective: Key Takeaways..

* Imposing hard constraints into the learning
process always helps
- Pinn family of Networks: Physics based multi-objective
losses are great!

* Original Pinn Papers

* Accelerating learning with data losses followed by physics-based
losses for fine tuning: DeepONet |

* Nvidia SimNet -

- Surrogate networks
* Solverin loop: Predictor-corrector networks e B Th | $010) S m mc

- Output layer-wise outputs in networks
* Ansys topo project: Volume constraint

- Implicit constraints in networks: Deep equilibrium ww ., Yoo R
[ |

Learning via Differentiable Physics

Correction via network for each unrolled simulation step €'(S | 8)

models

* Zico Kolter etel: https://arxiv.org/abs/1909.01377

* Equality and in-equality constraints into networks:
https://arxiv.org/abs/2104.12225 Nils, Tech Univ of Munich, Neurips 2020: https://arxiv.org/abs/2007.00016

* Optimizing/Solving during test time
- Solve/optimize after initialization from actual solver
- Don’t solver from scratch: Ansys ML based PDE Solver
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Key Takeaways: Ansys ML Perspective..

Army of learned networks

A controller/assembler to bring on-board
one or many learning models based on
context

Must solve again to make sure problem
specific aspects covered during inferencing

Not a typical inference, optimization
during inference time

7 .

/ “\\
N

hysics or
o | geometry
' N\ decompose /
\‘\. N
; Structured & | \p Physics or
| Unstructured | geometry
“\ data \_ encoding
hY
N
\\\ / / Assemble k/
\~.
P / Solve in a o
/ o\ reduced .=‘ / \
AL Y vector J—{  Physics
| Physics \ / . compatible
\ PDEs . space | constraints

| Discretization |
\ methods

Y ANSyYS



Research Projects
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Faster 3d Turbulence

Goals: Accelerated turbulent flow computation (10x-
100x) in Fluent for industrially-relevant scenarios

Google to build an accelerator for Fluent where high-fidelity
solutions can be solved on a coarse mesh

Google published Pnas Paper: Learning interpolation from high
fidelity low fidelity for 2D turbulence

Use Fluent UDFs

Interpolation based scheme simply does not scale to 3D
Filters increase(2n”2.K”n) from 128 to 1152!

Looking at learning corrections using a predictor-
corrector network(Nil’s 2020 Neurips)

0% _ Vit1 — 20, + v
0z? Az?2

Google

Algorithm built
on JAX-CFD

Learn...

h

Algorithm
accelerator

Ansys

Fluent

£

Algorithm

accelerator

Machine Learned Convective Discretizations through User
Defined Functions in Fluent

Michael Brenner, Stephan Hoyer, Dimitri Kochkov, Jamie Smith
Google Research

Kevin Kissell, Massimo Mascaro
Google Cloud

Chris Hill, Jay Pathak
Ansys

PROF. MICHAEL BRENNER

Research Scientist/Professor | Google/Harvard

©2021 ANSYS, Inc.
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A new ML Solver in latent space

e Motivation:

 Geometries and physics have lots of patterns!
Do we need to solve from scratch?

. Key insights:

Voxelize

Generate solutions, a priori, at a coarser resolution
* Breaks and learns solution on a finer resolution
* Assembles the finer solutions
* Scalable: geometries or complex physics
 50-100x speedup

Divide into finer voxel

- Publications:

=  CMAME journal: DiscretizationNet:
https://arxiv.org/abs/2005.08357

= |CLR workshop on numerical methods:
https://simdl.github.io/files/22.pdf

* Use-cases:
- Static & Transient PDEs

- Lid driven cavity and external flows over
objects of different shape

- Industrial Usecase: System level chip thermal
simulation tightly coupled CHT with natural

convection
Generate solutions on Learn locally
each finer voxel consistent
solutions
> >

Each voxel can be
8*8*8

point voxels
or more

Reiterate until convergence

\nsys
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ML Solver: Transient PDEs s

Velocity 3-D
inlet Computational
* Flow over a cylinder, unsteady RANS & Domain on cut
= Flow Reynolds number = 200 plane
= Heated cylinder
= ML-Solver runs 40x-100x faster Pressure
Cylinder outlet
9.400-02 3.60e+02
I 8 28202 I 3.54e+02
7.160-02 3.48e+02
6.050-02 F 3.42e+02
493202 === == = r 3.36e+02
Velocity Temperature
2 700-02 Fluent — - 3.24e402 Fluent =
1.58e-02 3 r 3.18e+02

3.12e+02
3.06e+02
3.00e+02

©2021 ANSYS, Inc. / Copyright



ML Solver: Lid driven cavity results in Fluent

Velocity Streamlines Center-plane velocity contour

Ansys Fluent

ML-Solver ML-Solver

©2021 ANSYS, Inc.

Results for lid driven cavity with top wall moving
at constant velocity
Verification for unseen cases of Re = 200
Speed comparison below for 2.2 million cells
using 1 CPU
Time per iteration

e ML-Solver: 1.8 seconds

* Ansys Fluent: 40 seconds
Overall convergence

e ML-Solver: 36s

* Ansys Fluent: 5000s
Acceleration:

e x139

\nsys
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ML Solver: External flow over objects

3-D objects X-Velocity Pressure
* Goal: Develop ML-Solver in the reverse mode B e [l .
(adjoint solver) to optimize engineering designs . M. w ]

* Forward solve using ML-Solver works well
= Flow over arbitrary objects

\"\\ H "
‘ Fluent Hucnl =
MAE: Sc‘ ML-Solver [ ML-Solve '
n Ansys Ansys
Fluent Fluent
B VALE: 34_- . ML-Solver [ienliniss

-----

* Adjoint mode needs more work!

i i

1\
MAE: 1¢* ML-Solver e

v, Ansys
Fluent

L
MAE: 9¢+

ML-Solver MI, -bol\ er

\nsys

©2021 ANSYS, Inc. / Copyright



ML Solver: Electronics chip packaging simulation

A
/
7’
7/
——————— I/ Si substrate 2D Povl/er Map
I
l Solder bumps and underfill
I
I
______ ~ o { Pkg substrate
~ ~
Chip package Package cross section
System level model (~0.0323 m3 with
(~0.163 m3) heat sink)

* Tightly coupled temperature and velocity
coupled CHT with natural convection

* One way coupling, forced convection
- Large eddy simulation to capture turbulence

Simplified 3-layer model Power map example

\nsys




ML Solver: Electronics chip packaging simulation, Problem setup

A small subset of system variables: Power map, ambient temperature,
material properties(K, CIID{ rho) of Die, Package, PCB, heat sink
geometry(base and fin thickness, # of fins), velocity etc.

Power map: 4 million sources (10um x 10um) for a 2cm x 2cm chip, each

source can take continuous values in given range (e.g., 0 to 10mWatt)
Physics involved: Heat transfer in solid and Fluid, Navier—Stokes's -
equations ...
Goal: Given any power map applied on a chip, predict the solutions for T, .

uv,wp Sample power maps

Expected ground truth solutions (7) (representatives of
real applications)

PCB

Die cut plane

\nsys



ML Solver: Electronics chip packaging simulation, preliminary results

* Line plot comparison for

* ML solver prediction for one test case the same case

Truth Predicted Truth Predicted 338 |
3 3375 —— Truth
l 0.025 l 0.025 | e Predicted
336
/0000 j|j0-000 e || (Som— 335 0
—0.025 —0.025 334
: 0 50 100
X-velocity Temperature Temperature at center plane
Truth Predicted Truth Predicted B
0.02
0. 0.005
0. 0.05 0.01
0. 0.00 0. 0.000 0.00
Z-velocity Pressure ° >0 100

Velocity at center plane

\nsys
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Thermal Artist, Fast architecture level what if thermal analysis

Fast Transient Thermal Solving for Architecture Level What-if Analysis

Physical data
(Chip + block bbox)

Transient Power

Scenario

(from Emulator/PA or w/
block functional Modes)

Selected BC from

Estimated Pkg/Brd

e

Block Power
Model Steady State/

Transient Thermal

‘ profiles

Architecture » o
. Reporting : Top
What-if Ranked Thermal

Hotspot in Time

Temperature

t3

i
o
—
=
—~
N

- 0000000000 - SmiT
. ] swtsaqmaT
H 0000
H 1 J Si Carrier | wmm
3500x8200 3500x8200 8200x8200 |-
i 0004
H ISR
003
1 0L
Top | |
E F G die !
7200x3500 4000x3500 4000x3500 .
A B c D Bottom :
3500x3500 3500x3500 4000x3500 4000x3500 die |

“Model-based Digital Twin for Anomaly Detection of On-chip Transient Thermal Response”, A. Kumar, N. Chang, et al., DesignCon 2021

\nsys
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Encoding geometry

* |dentified constraints of encoding for numerical simulations

* Improved the state of the art from research community

* Generalization: Trained to SpaceClaim simple parts scaled to unseen 2D/3D
geometries

Accepted at the ICLR 2021 Workshop on Geomedtrical and Topological Representation Leaming

Convolutional layer

< =) Regular connection

il Strided Convolutional layer
= Skip connection

Transposed Convolutional layer

GEOMETRY ENCODING
FOR NUMERICAL SIMULATION

Amir Maleki®, Jan Heyse®, Rishikesh Ranade®, Ha
! Ansys Inc, ¥Stanford L'r!i'.-j::_niir_'.-'

{amir.maleki, rishikesh.ranade, haiy.
heyseflztanford. edu

Binary image Ground Truth

©2021 ANSYS, Inc.

MetaSDF error

Proccssor crror

| }oosrs

0011
[ 00600 0oy
052 000
0450 + 0007
Q0375 00
0300 0o
00225 000
00150 000
00075 0001

binary image ground truth

processor
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Encoding geometry: Latest 3D Results

Reconstructed Reconstructed surface
surface with compression

Ground truth

Ground truth (top) and reconstruction (bottom ) of a GE
turbine engine

\nsys

©2021 ANSYS, Inc. / Copyright



Learning topology optimization

* Motivation
- Topology optimization

* Numerical technique to distribute the material inside a design region to have optimal properties and satisfies the prescribed loads, design and
manufacturing constraints

* Traditionally, solvers developed since 1989 [1] use minimization of elastic strain(called SIMP) energy of a part for a given total weight and
boundary conditions specified.

- The technique is general purpose and scales to other physics but extremely time consuming for full fidelity.

* Learning the relationship between the strain energy distribution and evolving shapes
- 3d dataset available with evolving densities and final density for various configuration of loading & geometries

- Challenges: Generalization to new geometries outside of distribution TS
=434 Engineering Applications of Artificial Intelligence i,
A Volume 106, November 2021, 104483

- Algorithmically-consistent deep learning
frameworks for structural topology optimization

/a Balu * &, Ethan Herron * &, Jay Pathak ° &, Rishikesh Ranade ® &, Soumik Sarkar * =

1 Ol
aydeep Rade * Y
. [ Adarsh Krishn =
1.0
Compliance of Initial geometry e —_— * —= Marching Cubes —°¢

Deep Learning based Topology
Optimization (DLTO) 00
— P |
redicted optimal density Optimal otry

Target volume fraction

) \ ) - \<\ l Figure 1: Overview: We propose a deep learning based topology optimization framework. The input to this framework is the compliance of the
- ; g ; / initial geometry along with the nn,\v.-r volume fraction. Using the DLTO framework, we predict the optimal density of the geometry without any
Yy 4 requirement of iterative finite element evaluations. We then convert the predicted optimal dens 111/ of the geometry and convert it into triangular

surface mesh representation using the marching cubes algorithm to give the final optimal design geometry

https://arxiv.org/pdt/2012.05359.pdf

— \nsys
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New ML Framework
Accelerate ML dev productivity

. h level APl for managing training, ML models,
ebugging, visuals, and evaluation

* Thin web-client, Jupyter Labs style

e Use from a library of templates

* Create images based on a base docker image

* Tensorflow/PyTorch backends

e C++and Python

* Auto-scale training with GPUs in DGX cluster

 Embed ML Dlls into product or use ML as web service

_ \nsys

Imports Components

import MLFramework.MLFramework.components.trainer.component.Trainer as Trainer
import MLFramework.MLFramework.components.data_streamer.component.DataStreamer a
import MLFramework.visualize.vis tools.plot3D as plt

Interactive 3D Data Visualization Tools

fig = plt.make_3d_figure from data(obj_data2)
fig.show()

DataStreamer API

¢ datastreamer = DataStreamer(file path, inputs=input cols, outputs=output cols)

train _loader, val loader = datastreamer.train data, datastreamer.val data

Model API

¢ model = utils.get model(input dim=11, output dim=4, model name='nn1")

Trainer API

¢ my_trainer = Trainer(model=model, run=1, data loader=train_loader,
validation loader=val loader, output dir="output") »

my trainer.train()

2134/2300 [05:49<00:19, 8.64it/s, loss=3.66e+01]



Hybrid digital twin

Full Integration

Motivation:
* Parameter calibration for equipment health monitoring

» Difficult to model system degradation using only physics alone

* Canwe use the real-time data collected to reduce the residue in physics-based H_ybrld

modelling? Physics/Data
Methodology: Model
* Use system characteristics to create a physics model 20
* Estimate the parameters using physics model === Costly function 5

o _ ® Sampled points /

* Integrate the estimation with data-based model to get more accurate parameter 10 _ /

calibration e Cheap function ! ®
Current projects and contribution: ¢ Fusion model 1‘ Al/ML

®

* Flowserve: Delivered noise fitting module. Working on Fusion model algorithm 0 o _® . ,I

(More accurate functionality based on Machine Learning algorithm) “\\ /

Y )

* Boeing: Preprocessing the raw data. Establishing baseline using Deep Learning . 0o ® * $-

based Neural Net models I © i

o 1050 02 04 08 08 1o [UHELE Data

Future directions: X

* Software integration for internal release
* Deploy these models as cloud-based microservice to the customers

* Add more functionality and improved models in subsequent updates

\nsys
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Deep Material Network

Multiscale Material Modeling using

7 " DMN in FEM Structure Analysis
w () = e
5 _ w;: fitting parameters 'E'
Wa ° g <Z W'x') a: activation function I::::i
\ Building block in neural network /
—— - Impact time
i a-o Bu Rotdon (2.,7) i Bullding block 2 \ 8 CPU time | 33 min 25 sec
‘ DN r - ol -.: Rotation: Cf = xc(CF. ak. BEvE)
D’ o Marial 1: 08 | R ) @® ; i : 25256 shell elements, 25600 nodes
e \ Vet - ! | 177 . v (€f) | Homogenization: Cf = hc(CZ, CF wi wiy, ..)
:: L / 145 L st | Homogenization (w*, w?) 'lz-k—l- ) -“2; St
g - , , “a” G : LS-DYNA DMN Package
\ - Mechanistic building block in deep material network (DMN) /
_ Fiber orientation_{ .
* New ML based network to handle multi-scale composite =
materials _—
. . . . . . FEM stress analV%ﬁ'
* Fixes material history dependencies without loss of physics =
=

» Several orders(1000x) faster than current model based
multi-scale method

\nsys
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Additive Manufacturing, ML accelerated fast thermal strain

Thermal Strain can take days or weeks to simulate a realistic part—which is not feasible for most
customers. A machine learning emulator proof-of-concept has been developed that:

Generalizes on machine Generalizes on Uses a deep convolutional neural network to achieve 1 to 2
parameters geometry orders of magnitude speedup
Single Bead Bounds
Parameter Range Units
Laser Wattage 50-700 W - g
Scan Speed 350—-2500 mm/s R —
Layer Thickness 10-100  pm /i o ‘ - m— —
Beam Diameter 20- 140 pm \S 2 ‘ > v st 33 se.com 32
3 3x3 sep_conv, (64, 32)
Heater Temperature 20 - 500 C ‘\ .\,’1 qrrsiasaomy o mreecemwen a
Slicer Bounds ) ‘%5 l;‘:::;:::r! Ix3 sep. ﬁ-;r-: (64, 64), /2
= NS e W1 Encoder Block 1 Decoder Block 1
Parameter Range Units _——— ‘ s 4 (64,641, °2
N - .—"< rse, (5, 64) 3 4‘
Hatch Spacing 60-1000 pm X /’/\I S e
- - o«ocevu«n
Starting Angle 0-180 deg g" , — s, 64 1w (64, 1281.72 28,012
Rotation Angle 0-180 deg Y/ ‘ \ — Decoder Bock 3
/ ' g (256, 128), *2
Stripe Width 1-100 mm ‘ —p— :
‘ - J Encoder Block 4 Dttodﬂllod‘
\ 3 res, (256,512), 2 (512, 256), *2
ey | :

\nsys
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