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Abstract

Analysis of large observational data sets generated by a reactive system is a com-
mon challenge in debugging system failures and determining their root cause.
One of the major problems is that these observational data suffers from survivor-
ship bias. Examples include analyzing traffic logs from networks, and simulation
logs from circuit design. In such applications, users want to detect non spurious
correlations from observational data, and obtain actionable insights about them.
In this paper, we introduce log to Neuro-symbolic (Log2NS), a framework that
combines probabilistic analysis from machine learning (ML) techniques on obser-
vational data with certainties derived from symbolic reasoning on an underlying
formal model. We apply the proposed framework to network traffic debugging by
employing the following steps. To detect patterns in network logs, we first gener-
ate global embedding vector representations of entities such as IP addresses, ports,
and applications. Next, we represent large log flow entries as clusters that make
it easier for the user to visualize and detect interesting scenarios that will be fur-
ther analyzed. To generalize these patterns, Log2NS provides an ability to query
from static logs and correlation engines for positive instances, as well as formal
reasoning for negative and unseen instances. By combining the strengths of deep
learning and symbolic methods, Log2NS provides a very powerful reasoning and
debugging tool for log-based data. Empirical evaluations on a real internal data
set demonstrate the capabilities of Log2NS.
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1 Introduction

Survivorship bias Wald (1980) refers to systematic error about our understanding of the world,
where we analyze data only based on success cases, omitting consideration (on purpose or not) of
the failing cases. One of the most known cases is pictured in Fig. 1 2 when Abraham Wald attempted
to reduce bomber losses due to enemy fire in World War II. During the analysis, he suggested that
the bullet marks (hypothetically represented as red dots) showed only cases where the airplanes
could land safely, whereas portions without red dots were due to cases when the bombers crashed.
Abraham Wald recommended reinforcing portions without red dots, contrary to the original belief
that the areas with red dots would need to be reinforced as they showed areas where enemy fire hit
the bombers.

There are three takeaways from this example that we will address in this paper.

• It is very easy to analyze complex scenarios through visualizations of observational data
based on positive (red dots) and negative (lack of red dots) scenarios;

• Observational data will consist mostly of positive examples;
• If we cannot get insights from failures or negative scenarios, our analysis may be compro-

mised.

Figure 1: Suvivorship bias

By observational data, we are referring in this paper to data collected over time from a reactive sys-
tem Harel & Pnueli (1985) - a system that responds to changing actions and conditions, influenced
by logical rules and structures. The collected data consists of sequences of inputs and outputs of
the system, or sometimes just the outputs, which we denote by logs of the system. We assume an
associated formal mathematical model, sometimes referred to simply as the model. We assume here
the formal model encompasses all of the rules and constraints of the reactive system.

We consider that both the real reactive system and the model are capable of generating log data.
However, the formal model by construction is a conceptual representation of the real world, which
may contain further restrictions on how the reactive system behaves over time. For example, in a
real world we may have limitations on what inputs a reactive system may see in the future based on
previous outputs, such as in the case of intelligent agents Sutton & Barto (2011).

In numerous Machine Learning and Deep Learning based studies of log data Dangut et al. (2020);
Fontaine et al. (2019); Fang et al. (2020); Calabrese et al. (2020), it is common for a user who
wants to better understand the underlying behavior of the system, or automatically analyze input-
output responses of the system, to obtain actionable insights through the collected logs. However, by
construction, these logs give rise to survivorship bias Shermer (2014), simply because they reflect
observable behaviors of the reactive system over a limited time and limited scenarios, with only

2credits to By Martin Grandjean (vector), McGeddon (picture), Cameron Moll (concept) - Own work, CC
BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=102017718
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normal cases or with at most a very limited number of rare cases Mehta (2020); Takakis et al.
(2019). Some of the representative examples where validation and analysis based on observational
logs can lead to catastrophic consequences are the Pentium bug Pratt (1995), and the crash of flight
AF-447 BOTTYÁN & PALIK (2010).

When analyzing logs, several techniques have been used in the past to reduce the effect of this
bias of observable data, such as the use of constrained random simulation Huang et al. (2021) or
generation of synthetic training data Nikolenko (2019). However, it eventually becomes too hard
if not impossible to collect data on certain rare scenarios, and even attempting to creating synthetic
data may become a complex task Haixiang et al. (2017).

Logs can consists of vast amounts of data, and it is usually useful to determine if one has seen
anomalies in the logs, usually occurring as a post processing step Omar et al. (2013) or during
data collection Mehta (2020). Although machine learning models are useful to summarize and find
anomalies in the data in a probabilistic way, because data is biased during data generation, a user
may be interested to determine if a scenario is ever possible to occur. Although this question may
not be suitable for a machine learning or deep learning model, it can be answered by a symbolic
proof system based on a formal model of the reactive system Clarke et al. (1996); Kropf (2013);
Gupta (1992); Bernardi et al. (2021).

This paper presents Log2NS (Log-to-neural-symbolic), a framework that enables users to reason
about logs from a reactive systems by using machine learning and formal techniques. This solution
can be best represented in Fig. 2 as a revisit of the figure originally presented at Hoehndorf et al.
(2017), and it can be seen as an instance of using neural-symbolic systems Garcez et al. (2008);
Lamb et al. (2020). The framework first analyzes logs by computing embedding vectors on the
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Figure 2: Revisit of figure from Hoehndorf et al. (2017)

entities of the logs. Then, it combines these vectors to represent log entry entities, using these rep-
resentations to create visualizations. A powerful query language enables users to query the entire
system for positive examples, by statically searching the logs or by computing correlations on the
vector embeddings, and it uses formal engines to generate negative examples or even positive ex-
amples, when the query is only partially expressed or expressed as complex set of constraints. In
this case, the biased insights from observational data are complemented by queries using the formal
engine, providing users with a comprehensive insights that enables one to draw conclusions. The
rest of the paper is organized as follows: Section 2 outlines the related work. In section 3 we will in-
troduce the necessary background on Representation learning using embedding and its applications.
Section 3 also introduces Formal methods on security policy. In section 4, we present our approach.
Finally, in section 5, we conclude the paper by presenting our experimental evaluation on a real data
and outlining the areas for future research.
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2 Related Work

Machine learning has proved very powerful but has the limitation of interpretability. Symbolic AI
was the main direction taken by AI research for a long time. Neuro-symbolic AI is a relatively new
approach to AI that combines machine learning and symbolic AI. Neuro-symbolic AI can be seen
as largely working within the framework of symbolic AI, using machine learning to infer and build
the formal model upon which symbolic AI can reason Garcez et al. (2008). Our approach differs
from Neuro-symbolic AI in that we begin with a formal model, and its observational data, and move
forward from there. Rather than build a formal model from the ML model, our approach treats the
ML model and formal model as collaborative players in a framework that accommodates complex
real-world rule sets to enhance our understanding of the data flows they govern.

The formal model studied in this paper begins with firewall configuration components and policy
rules. These rules are built by people over time. They grow and accrete as their underlying net-
works concerns change. Maintenance of policy sets is challenging given network complexity and
the changing landscape of threats. Of high importance are questions such as: do these rules keep my
network secure? Is a particular rule letting in unwanted traffic? Are my rules too strict, and disallow-
ing necessary traffic? Are the rules creating bottlenecks? Have route changes or network changes
rendered my rules obsolete? Bodei et. al have developed methods to assess firewall configurations
using a formal model Bodei et al. (2018). In Log2NS a machine learned model of the observational
data and a formal model of the firewall configuration work together to increase understanding of
possible network problems and potential flaws or inconsistencies in the firewall configuration.

3 Background

3.1 Representation Learning using Embedding

The problem of analyzing logs for fault detection and diagnosis, particularly in security applica-
tions, is not new and has been a long rich area of research Du et al. (2017); Fu et al. (2009);
Ring et al. (2019); Lopez-Martin et al. (2017); Ibrahim et al. (2016); Xu et al. (2009); Reidemeis-
ter et al. (2011). To best automate log analysis using ML techniques, the first step is effective log
representation. This section reviews a series of recently introduced methodologies from the field
of representation learning that attempt to learn from complex high dimensional space by first trans-
forming them into vectors, followed by a downstream learning task, e.g., say calculating behavioral
similarities between network logs.

Word2Vec is arguably the most popular word embedding model proposed by Mikolov et al Mikolov
et al. (2013a) that project words to vectors of real numbers. Mikolov et al. proposed two different
architectures; 1). Continuous bag of words (CBOW) neural network that maximizes the probability
of a word given its context as in Eq. 1, and 2) Skip-gram model which uses a current word to predict
the context words as in Eq. 2.

1

η

η∑
n=1

log p(wn|wn− c
2
...wn+ c

2
) (1)

1

η

η∑
n=1

n+c∑
m=n−c,m 6=n

log p(wm|wn) (2)

where η is vocabulary size and c is the size of context for each word. This also inspired some well
known successful adaptation of Word2vec for nodes in large graph like Deepwalk Perozzi et al.
(2014) and its extension node2vec Grover & Leskovec (2016). However, these methods suffer due
to the inability to generalize to unseen data instances or to encode node attributes for graph em-
bedding. Consequently, Hazem et al proposed a Graph Neural networks (GNNs) based method to
perform graph representation learning at scale with better generalization Soliman et al. (2020). The
node embeddings are calculated using an information diffusion mechanism, where nodes broadcast
information to their neighbours until convergence. With the advent of GNN, several graph-based
representation techniques have emerged Hamilton et al. (2017); Peng et al. (2018). The most rep-
resentative work in this line is Text-GCN by Yao et al. that achieves state-of-the-art results on
benchmark domains Yao et al. (2019) with one big disadvantage of high memory utilization. Pen-
nington et al. proposed GloVe, a method that combines the benefits of skip-gram and global matrix
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factorization. GloVe is based on the word-context co-occurrence matrix as:
J = f(#(wn, cm))(wT

ncm + bwn
+ bcm − log#(wn, cm))2

where bwn
, bcm are scalar biases for the target and context words. Ring et al. extended Word2vec

and proposed IP2Vec that aims at transforming IP addresses into a continuous feature space Rm to
compute distances between the IP addresses in this feature space Ring et al. (2017). They employ
simple traffic descriptors as the context to train the Word2Vec model. Their empirical evaluations
demonstrate the superiority of IP2Vec over other embedding techniques techniques within a botnet
data set. In this paper, we will employ similar embeddings to learn meaningful vector representations
of the network logs.

3.2 Applications of Embedding

Analysis and clustering of network traffic logs aim at answering several interesting questions in the
domain of cybersecurity such as identifying host behaviors, grouping hosts with similar intentions,
and so on. Unfortunately, this is an arduous task for humans to classify these logs that are generated
in large volumes. Consequently, more often than not, this problem is posed as an unsupervised
learning problem. Many approaches have been proposed to effectively condense or summarize these
logs. These include, anomaly or outlier detection Münz et al. (2007); Zhong & Khoshgoftaar (2007);
Wang et al. (2017, 2013), network traffic classification Pujari et al. (2017); Erman et al. (2006);
Glennan et al. (2016); Singh et al. (2016), and data security applications like policy generation,
signature detection etc. Finamore et al. (2011), to name a few.

Earlier systems heavily relied on rule-based approaches to classify or group log entries. These
rules are limited to specific application scenarios and require extensive domain knowledge making
the problem harder Cinque et al. (2012); Prewett (2003); Rouillard (2004). Other generic meth-
ods typically apply a two-step procedure; first, parse log entries to structured forms (following the
methodologies listed in section 3.1) and then employ the learning task say clustering. A clustering
function c takes a set of feature vectors as inputs and allocates them to appropriate clusters based on
a similarity measure such that c : R|N |xd =⇒ NN . Choosing a clustering algorithm from the many
options like Kmeans MacQueen et al. (1967), Gaussian Mixture Models Bishop (2006) etc. for the
use case in hand is a non-trivial task.

McGregor et al. proposed AutoClass, a probabilistic model-based clustering analysis to group logs
using features from the transport layer McGregor et al. (2004). Zander et al. proposed an enhance-
ment of the Bayesian clustering technique using an expectation–maximization (EM) algorithm that
helps determine the number of clusters as well as supports the soft clustering of the data. Zander
et al. (2005). However, the EM algorithm is often rather slow. In this work, we use the most effi-
cient partition-based clustering method K-means which is a simple yet fast algorithm. For the set
of feature vectors X ⊆ Rd, the k-means objective is to find a set C = c1, ..ck of kclusters, such
that it minimizes the average squared error SSE =

∑
x∈Xminc∈C(dist(x, c)). Another successful

method, DBSCAN, forms clusters based on the notion of density-reachability, i.e. A point is directly
density-reachable to the objects in ε-neighborhood of this point. However, the approach itself is very
sensitive to the parameters. Erman et al. compared empirically the effectiveness of K-means, DB-
SCAN, and AutoClass clustering for the traffic analysis and classification task, wherein the authors
demonstrate the superiority of K-means over other state-of-the-art methods in learning high-purity
clusters Erman et al. (2006).

3.3 Formal methods on security policy

Formal methods encompass a group of technologies for mathematical reasoning about the sanity of
system behaviors. They have found successful applications in specifying, building and verifying
complex software and hardware systems D’silva et al. (2008); Stewart et al. (2021); Bernardi et al.
(2021); Biere (2021). A formal model of a given system is a precise mathematical description of its
components and their relationships Edwards et al. (1997). Taken together, the model represents sys-
tem behavior. Formal models are usually stated via mathematical formulae, often equations Barrett
et al. (2010). Formal engines De Moura & Bjørner (2008) perform satisfiability checks to deter-
mine if the behavior of the system satisfies a given property, which also is described using a formal
representation. A property in this context is a high level description of system behavior. If a solu-
tion exists, a trace depicting the solution is generated, otherwise engines return unsatisfiable i.e. no
solution exists.
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Formal synthesis/verification have proven to be effective in validation of firewall security policies
Liu (2008); Bodei et al. (2018); Beckett et al. (2017). A firewall configuration is composed of
logical components, whose interactions define the firewall behavior. Security rules within the policy
specify which traffic to accept or reject, based on filtering conditions. Policy administrators make
use of a variety of filters such as IP addresses, geographical zones, applications etc. to specify
security rules. Further, the specification enforces a precedence order amongst the rules. Examples
of logical components in a configuration:

• network interfaces , zones, addresses, address groups
• applications, application groups
• address translation rules (NAT)
• user, security profiles
• routing tables
• security rules
• address, address groups

To build a formal model from a firewall configuration, all its logical components and their relation-
ships are converted to formulas.

4 Our Approach

Algorithm 1 depicts the steps involved in Log2NS approach. It consists of two collaborative models,
with a unified query interface for user interactions. As shown in Fig. 3, the query engine routes user
queries and interacts with the two models to return a final set of results. The Formal model is
built by first extracting logical components from input firewall configuration files. Thereafter each
logical component is converted to an equivalent formal representation. For example, Table 1 shows
a security rule (SR1) in firewall configuration and its conversion that allows traffic from Trust zone
to Internal zone via any application.

Table 1: An example security rule

Rule name From Zone Application To Zone Action
SR1 Trust Any Internal Allow

From Zone ∈ [’Trust’] ∧ To Zone ∈ [’Internal’]→ Action ∈ [1] (3)
Zone ∈ [’Trust’, ’Untrust’, ’Internal’] (4)

Action ∈ [0, 1] (5)

Entities like Source IP, Dest IP, Applications, Actions etc are considered as independent variables
(Eq. 3). Some of these variables (as shown in Eq. 4, 5) can take values from a discrete set of possible
values. The discrete set is inferred from the configuration. To provide solutions to user queries, an
open source network configuration analysis tool is used Fogel et al. (2015).

Firewall traffic logs are the other set of inputs to Log2NS for building the machine learning model.
Traffic logs consist of a defined set of entities e1, e2, . . . en ; example - Source IP address, Des-
tination IP address, IP protocol, Source port, Destination port and Bytes sent. Depending on the
device and vendor these flow logs may consist of additional parameters such as From zone, To zone
and Application. Many of these entities are categorical and do not carry natural order; thus their
meaning depends on context. To analyze logs we first create a global embedding of these entities
via an approach similar to IP2Vec. Each log entry can be seen as a sentence as it carries mean-
ing. For example, [10.0.0.1, 8.8.8.8, TCP, 80, 100] states that a local machine is talking to Google
server over port 80 using the TCP protocol and has sent 100 bytes of data. Log2NS defines con-
text and target pairs from the set of log entities. Once the context-target pairs are generated for
the input logs, the entity embedding gets computed by training a fully connected neural network
with a single hidden layer whose size is much smaller than the input and output. The input of this
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Figure 3: Log2NS architecture diagram

network is a one-hot encoded context vector while the output is the probability of the target vector
computed via a softmax function. The weights that map the input to the hidden layer give us the
entity embedding. In practice, computing the probability of the target vectors becomes intractable
due to the denominator of the softmax computation. There are two ways to handle this. One is to
use negative sampling Mikolov et al. (2013a), wherein the training step, instead of iterating over the
entire vocabulary, we generate several negative examples from the noise distribution of the words.
Because these negative examples have lower probability in the corpus, they simplify the softmax
computation. Another approach is to use hierarchical softmax that uses an efficient binary tree for-
mat to represent the words in the vocabulary Mikolov et al. (2013b). We use hierarchical softmax
to compute the embedding for two reasons: 1. it works better for a corpus with infrequent words
and in our case, some of the entity vectors might be present in only a few logs; 2. while generating
the context-target pairs we ignore some of the possible combinations that appear in the same row
(one observation logged from the firewall) as they should have zero impact on the embedding. Neg-
ative sampling might generate a few context-target pairs within the same row and assigning negative
impact to these pairs might cause inaccurate embedding.

Once the embeddings for the all the entities e1, e2, . . . en are computed using the above procedure,
we generate a vector for each row by concatenating the entity vectors. However, the concatenated
vector might contain correlated entries. To remove the correlation and obtain a more compact low-
dimensional representation, one can use non-linear manifold learning techniques such as kernel
principal component analysis (KPCA) Schölkopf et al. (1997) and diffusion maps Coifman & Lafon
(2006). Often times, using the correct distance metric to compute the correlation becomes important.
Some of the manifold learning techniques such as diffusion maps allows us to measure intrinsic
distance between the vectors Thimmisetty et al. (2014, 2018). Instead of concatenation, one can also
use weighted average to assign importance to some of the entities. Once the vectors for each row is
computed, we use unsupervised clustering techniques (K-means and Gaussian mixture models) to
identify patterns in the logs.
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Algorithm 1: Log2NS algorithm
Input: logs, configuration file
Output: patterns in logs, positive examples, negative examples

1 Generate context and target pairs
2 Compute the embedding of the log entities with hierarchical softmax
3 Generate vector for each row of the log entry
4 Create clusters using unsupervised learning
5 Create a formal model with configuration file
6 Identify the key question to be addressed
7 Use formal reasoning and log querying to generate positive and negative examples

5 Experimental Evaluation

5.1 Data Description

Figure 4: Network topology

In our experiments, we worked with network traffic data3 from a real network with the topology
shown in Fig. 4. The network has three sub networks of interest: a firewall-protected main office
and two remote offices. The office firewall has IP address 10.11.29.250. The observational data
spanned a period of three weeks. Raw flow records included source and destination IP addresses
and ports, protocol, utilization, source and destination zones, identified applications, TCP flag and
tunnel information. The network traffic is generated by users and by devices both inside and outside
the network. Firewall configuration files during this period were also stored.

5.2 Experimental Setup

We demonstrate the Log2NS framework by building ML model from the observational data, sym-
bolic model from the firewall configuration. We show the effectiveness of our approach in analyzing
the access patterns and associated security rules.

5.2.1 Building the Log Data Model

The statistical model was created using three weeks of traffic data. Traffic log entries consisted of:
Source Address, Destination Address, Application, IP Protocol, Source Region, Destination Region.
To generate embeddings, the context target pairs (Table 2) were used. We used the embedding ap-
proach described earlier and implemented using the Gensim package Rehurek et al. (2011). We
grouped the data into 20 clusters using K-Means Pedregosa et al. (2011) and the model hyper pa-
rameters were obtained by grid search.

3Dataset will be provided as a supplemental material with Apache 2.0 licence
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Table 2: Context-Target Pairs

Context Targets
Source Address Destination Address, Application

Application Destination Address
Destination Region Source Address, Application

5.2.2 Building the Formal Model

To build the formal model, a previously generated snapshot (same period as the traffic logs) of
firewall configuration files were provided as inputs to Log2NS.

5.2.3 Generating Questions and Reasoning about our Models

The next phase of the Log2NS framework is an iterative process: observations from the statistical
model motivate queries to the symbolic model, which can lead to further observations and ques-
tions. From the clusters generated by the statistical model, we picked following positive examples
of behavior to investigate: traffic to an unintended region, and dns queries outside of the firewall.

a) Traffic to an unintended region was seen in the following cluster:

Table 3: Unintended Region Cluster

Source IPs Destination IPs Applications
10.11.29.5 42.62.94.2

six additional twenty-two additional not-applicable
source IPs destination IPs

This cluster stood out as its showed traffic to an unintended region. Further there was no appli-
cation identified for the traffic. Through the unified query engine, Log2NS was able to confirm
that this traffic is (and will be) allowed only by BypassFw security rule (Table 4). This exposed
mis-configurations in policy, which could lead to security threats.

Table 4: Symbolic Model answers to Access to undesired region

Filter Name Action Line Trace
- Matched security rule BypassFW

zone Trust - Matched source address
vsys1 to PERMIT BypassFW - Matched address any

zone Untrust - Matched destination address
vsys1 - Matched service application-default

- Matched application any

b) The next cluster of interest (Table 5) showed source IP addresses that connected to internet dns
servers (4.4.4.4 and 8.8.8.8).

Table 5: DNS Queries to Internet Cluster

Source IPs Destination IPs Applications
192.168.1.254 4.4.4.4
10.11.29.222 8.8.8.8 dns

10.11.29.6

We wanted to disable access to internet dns servers, such that dns requests use local dns server
(10.11.29.250). We added new security rules to disallow such accesses and validated the change
with Log2NS.
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5.3 Future directions

Building an accurate formal model from a specified firewall configuration is often the most critical
and challenging step towards using such a model for property verification. The Log2NS framework
will be enhanced to select a fixed number of traffic logs pertaining to security rules, to create formal
‘witness’ properties. Witness properties check for the existence of specified traffic scenarios against
the formal model. Any failures will point to an over-constrained model, indicating nuances not
captured during formal model creation. Further, Log2NS will be enhanced to perform incremental
training of the machine learning model. The traces generated by the formal model would be used as
pseudo input logs for training.

6 Conclusion

In this paper, we addressed the problem of enhancing insights from observational data coming from
logs by using formal engines. We showed use cases, where logs can suffer from the survivorship
bias problem, and because of that, insights derived from them will be inherently biased, if analysis
is not complemented by other methods.

We introduced Log2NS, a framework that enables users to reason about logs and to understand
a complex system by using deep learning techniques on logs. We captured system behavior us-
ing embeddings on log entries, that were later combined, and clustering techniques were used to
understand interesting scenarios. Because log data is biased, we enhanced the logs using formal
technology. Formal engines and a constraint language that accepted partially specified constraints
and negation enabled a user to query the framework to understand rare conditions or negative exam-
ples. We showed how the framework was used to extract insights in a network security environment,
where logs were obtained from firewall network and security configuration. A corresponding formal
model was used to determine if traffic could be accepted or denied, and explore optimizations of
security rules.
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