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Electronic Devices are Everywhere
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Designers Try to Deliver Generational Gains
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Apple A14Apple A12 Apple A13 Apple A15

iPhone 13iPhone 8, X iPhone XS, XR iPhone 11 iPhone 12

Apple A11

5nm
15 B trasistors

5nm
11.8 B trasistors

7nm
8.5 B trasistors

7nm
6.9 B trasistors

10nm
4.3 B trasistors

Benefit from increased integration and architecture improvements

*Source: TechInsights Inc.



Chip Design Challenges
Diminishing performance gain and increasing design cost 
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Per-Core Performance Gain is Diminishing

Partially collected by M. Horowitz et al. Plotted by Karl Rupp, 2020

Design Cost is Skyrocketing

International Business Strategies, 2020

(Not including manufacturing)



Inefficient chip design methodologies

This is Real Problem!
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For one Arm CPU core
with ~3 million gates

• Accurate power simulation takes ~2 weeks

• One iteration in physical design take ~1 week

• Solutions repeatedly constructed from scratch

• Solutions rely on designer intuition

• ……

Challenges at advanced node

• Pressure from IPC and frequency

• Peak power is increasing

• Power fluctuation is more abrupt

• Power delivery technique is limited

• Increasing design rules to meet

• Increasing wire parasitics, causing 
wire delay and noise

• ……

Source: The Kirin 990 SoC. TechInsights Inc.



Our Work: Intelligent Circuit Design & Implementation
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PPA

Power

Performance

Area

Power & Power Delivery Challenges

Xie et al. [ICCAD’20], Xie et al. [ASPDAC’20],

Xie et al. [MICRO’21] (Best Paper Nomination) 

Routability Challenges

Xie et al. [ICCAD’18], Huang et al. [DATE’18], 

Chang et al. [ICCAD’21]

Timing & Interconnect Challenges
Barboza et al. [DAC’19], Liang et al. [ICCAD’20],

Xie et al. [ASPDAC’21], Xie et al. [TCAD] (in review)

Overall Flow Tuning

Xie et al. [ASPDAC’20] Covered in this talk
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Case Study 1: 

Power & Power Delivery Challenges



Problem 1 – Design-time CPU Power Introspection 
• Delivering generational gains in IPC and FMAX adversely impacts CPU power

• Diminishing returns with speculation, wide-issue and vectored execution

• Power consumption is adversely impacted and trends upwards
• Efficiency gains through Moore’s law scaling has effectively stalled
• Parallel execution and greater transistor integration => increased switching activities

• Power-delivery resources not keeping pace with CPU power demands
• Resistive interconnects at scaled technology nodes => greater sensitivity to peak-power
• Packaging technology unable to sustain di/dt demands 

• Increasing power-sensitivity drives the need for design-time introspection
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Problem 2 – Run-time Introspection

• Peak-Power mitigation requires accurate power-estimation to drive throttling decisions
• Manually inferring proxies is difficult, particularly in modern CPUs with complex underlying µarch

• Micro-architectural interactions (branch-mispredicts, ROB issue, hit-after-miss) trigger abrupt 
changes in CPU current-demand leading voltage-droop due to di/dt events 
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Deep voltage-droop due to 
workload-driven di/dt event

Measured di/dt event on Arm A72 SoC

𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: 𝑇𝑇𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 < 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑



• Automated Power-Proxy Extraction 
• Use ML techniques to identify correlated events

• Fast, yet accurate on-chip metering
• Proven on commercial CPUs with >95% accuracy 
• 0.2% area overhead over Neoverse N1 core

• Per-cycle temporal resolution
• Unify simulation, Ldi/dt mitigation, emulator-

tracing within the same framework

• Extensible to higher abstraction simulation
• Trade-off accuracy for pre-identified events 

APOLLO – Key Objectives and Attributes
Problem: Prior art suffers from stark trade-offs between accuracy and speed
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Accuracy versus Speed Trade-offs 
(Qualitative)

Lo
w

   
  A

cc
ur

ac
y

Hi
gh

Netlist Simulation

weekshours daysminutes
Speed

RTL-Simulation
APOLLO

High accuracy & fast 
speed

Arch Event-based



APOLLO Includes Design-time Model and Runtime OPM
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Neoverse N1 CPU floorplan

Runtime
on-chip

power meter

Design-time
power
model

APOLLO

Simulation traces of signals Selected CPU power proxies



APOLLO Feature Generation & Model Training

13

cycle1

cycle2

A design in RTL level.

𝐹𝐹 =

𝑀𝑀 RTL signals

…
…

… …
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Train the ML model: 𝐹𝐹 𝑋𝑋 = 𝑦𝑦
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In .fsdb/.vcd file format 𝑴𝑴 > 500,000 in Neoverse N1
𝑴𝑴 > 1,000,000 in Cortex-A77

cycle0
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ML-Based Power Proxies Selection
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Step1: Pruning
Training with 

strong penalty
strength

Step2: ‘Relax’
Retrain with 

weak penalty 
strength

……

𝑴𝑴 Features 

𝑥𝑥1

𝑥𝑥𝑀𝑀

𝑤𝑤𝑤𝑀𝑀

𝑤𝑤𝑤1𝑥𝑥2

𝜮𝜮

𝑃𝑃 = ∑𝑖𝑖=1𝑴𝑴 𝑥𝑥𝑖𝑖 ∗ 𝑤𝑤𝑤𝑖𝑖

𝑸𝑸 retrained weights 

𝜮𝜮

𝑤𝑤1

𝑤𝑤𝑄𝑄

𝑃𝑃 = ∑𝑖𝑖=1
𝑸𝑸 𝐶𝐶𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖

……

Reach 𝑸𝑸 non-zero weights 

𝑤𝑤𝑤1 ≠ 0

𝑤𝑤𝑤𝑀𝑀−1 ≠ 0

𝜮𝜮

𝑤𝑤𝑤𝑀𝑀 = 0

Minimax concave penalty (MCP) for pruning

Model construction in two steps Please check our paper [MICRO’21] for
detailed discussion on MCP method

https://www.dropbox.com/s/tlatcoacwy2wr9p/micro21-APOLLO.pdf?dl=0


Training data automatically generated
• Micro-architecture agnostic genetic algorithm 

to automatically generate max-power virus 

• A “diverse” set is generated: lower-power in 
early generations and higher-power in later 
generations

Model testing

Our Proposed Power Modeling Approach
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A “diverse” set of random (micro-)benchmarks is critical 

• Experiments on 3GHz 7nm microprocessors
Neoverse N1 and Cortex A77

• Testing on Arm power-indicative workloads
• Steady-state, transient, and throttling regions
• High- and low-power-consumption regions

Power virus 
generated

Start with 
low-power
benchmark



Prediction Accuracy as Design-Time Power Model
Per-cycle prediction from APOLLO with 𝑸𝑸=159 proxies

Prediction trace shows great
agreement with ground-truth

• MAE < 10% for
all workloads

• MAE = 7.19%
• RMSE = 9.13% 
• R2 = 0.953



Automated Low-Cost Runtime OPM Implementation
APOLLO is designed to be hardware-friendly
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No multipliers required

Only 𝑸𝑸 binary inputs
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Accuracy vs. Hardware Cost (Area Overhead) of the OPM
Runtime OPM implementation on Neoverse N1
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• Trade-off accuracy and hardware cost
• Sweep proxy num 𝑸𝑸 and quantization bits 𝑾𝑾
• Strategy

• Keep 𝑾𝑾= 10 to 12
• Vary 𝑸𝑸 for different solutions

• For an OPM with 𝑸𝑸=159, 𝑾𝑾=11
• < 0.2% area overhead of Neoverse N1 
• < 10% in the error (RMSE) 

RM
SE

M
easured on HW

 (%
)

One OPM 
solution

0.1%          0.2%           0.3%           0.4%

OPM Gate Area 
Overhead:
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Case Study 2: 

Routability Challenges



Routability Background
• Routability: post-routing design rule checking (DRC) violations

• Early routability prediction enables early mitigations of DRC violations 

• Previous methods:
• Analytical techniques: very fast but not enough fidelity
• Trial routing: acceptable fidelity but not fast enough
• Traditional machine learning (ML) models like logistic regression (LR), support vector 

machine (SVM): global information of the whole layout not captured

21
Routing congestion



Our Works for Routability Prediction
• Input placements can be view as 2D images

• CNN is naturally a good fit to predicting #DRV

• DRC hotspot is also a 2D prediction 
• Pinpointing DRC locations viewed as semantic segmentation

• CNN/FCN are suitable for routability prediction
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cat / dog

cat

RouteNet [Xie, et al., ICCAD’18] J-Net [Liang, et al., ISPD’20] PROS [Chen, et al., ICCAD’20] 



AutoML for EDA
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․ AutoML for EDA: a higher level of automation
 Truly no human in the loop

․ Automate ML model designs: Neural Architecture Search

Trend

Traditional EDA
(matured)

ML for EDA
(well studied in recent years)

AutoML for EDA!
(promising but unexplored)

No Human in the
Loop (NHIL)

23



Methods – The Model Architecture

• Three layers, each with parallel and shortcut structures.

• Six blue blocks are searchable parts, yellow blocks are fixed parts.

• Two different heads for different tasks.
• Regression head for violated net count prediction, providing one scalar number prediction
• Segmentation head for DRC hotspots detection, providing two-dimensional prediction
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Methods – The Model Architecture

• Three components in NAS: 1. search space; 2.evaluate strategy; 3.search strategy

• Sample from a completely-ordered graph (guide-DAG 𝐺𝐺𝑖𝑖) to form a sampled-DAG (𝑆𝑆𝑖𝑖)
• After training, we get the evaluation metric of the sampled model

• Update the sampling probability (weight) by the metric accordingly

25

Standard convolution
Mixed (depth-wise)

convolution

Candidate node operations

Atrous/dilated 
convolution



Experimental Results – Accuracy
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Comparison of the violated net count prediction

Comparison of the DRC hotspot detection



Summary and Takeaway

• Problem: Increasing Challenges in Chip Design
• Cost, Time-to-Market, Reliance on Designers, Diminishing Performance Return, ……

• Our Work: Intelligent Circuit Design and Implementation 
• Develop Customized ML Methods: Pruning, Linear Model, CNN, GNN, ……
• Tackle Key Design Objectives: Power, Timing, Area, ……
• Benefit: Less Simulation Time, Better Solution Quality, Less Human Designer, ……

27

Chip Design Intelligent
Chip Design

Our Vision
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Thanks! Questions?



• Title: Efficient Digital Design and Implementation with Machine Learning in EDA

•

• Abstract:

• EDA technology has achieved remarkable progress over the past decades. However, chip design is not completely automatic yet in 
general. For example, automation of EDA flow is still largely restricted to individual tools with little interplay across tools and 
design steps, and tools in early steps cannot efficiently judge if their solutions eventually lead to satisfactory designs. In addition, 
solutions are constructed from scratch even if similar optimizations have already been performed repeatedly. We believe such 
limitations can be largely addressed by knowledge reuse with machine learning, whose major strength is to explore highly 
complex correlations between design stages based on prior data. In this talk, I will share our recent research about customized ML 
algorithms in EDA. They cover a wide range of design stages from the RTL level to post-routing, solving primary chip-design 
problems including power, timing, interconnect, IR drop, routability, and design flow tuning. After introducing these research 
efforts systematically, I will present two latest progresses with more details. They are power estimation and monitoring 
implemented at the RTL level, and efficient routability prediction performed during layout. Finally, I will share our experience and 
vision in enabling efficient digital design and implementation with machine learning in EDA.

•
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