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Solido ML Tools and Benefits

Solido Variation Designer

« 2-50X faster PVT analysis
« 10X faster 3-sigma Monte Carlo (1 PVT)

« 100X faster 3-sigma Monte Carlo (many PVTs)

« >1KX faster 4.5-sigma Monte Carlo

« >1MX 6-sigma Monte Carlo

Solido Characterization Suite

Generates Liberty models at new PVTs 1000X faster

* Reduces overall timing characterization schedule by 50%

Finds new classes of errors in Liberty data

Reduces Liberty debugging time from weeks to hours
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Great ML Requires More Than Just Speedups...

Verifiability: Can you tell if the ML model is right?
Accuracy: How close to perfect is the ML model?
Generality: Does the ML approach work on everything?
Robustness: Can | bet my next design schedule on it?

Usability: Does it “just work” for my team?
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ML CAD Tool Capability Levels

Level 0: No ML
Gives the right answer by running all cases. Often too compute-intensive for production use.

Level 1: Partially reliable ML
Big speedups. Sometimes right, sometimes wrong, and can't tell. Cool demo! Shows promise. Not useful, yet.

Level 2: Partially reliable ML with accuracy-aware self-verification

Can tell when it’s right or wrong based on accuracy criteria. Tool can’t solve it automatically. Need a backup plan.

Level 3: Adaptive, accuracy-aware ML with self-verification
Meets accuracy criteria on most cases automatically. Still the odd bump. Useful, with great support.

Level 4: Fully reliable, accuracy-aware ML with self-verification
Production-ready and dependable. Production hardened and proven. Just works. Use it.
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ML Levelquest and Effort

 Level 0to 1: Identifying and testing ML opportunities (hours-days)
« Level 1to 2: Defining what “accurate” means; making the algorithm self-verifying (weeks-months)
 Level 2to 3: Developing methods for achieving accuracy dynamically and automatically (months-years)

« Level 3to 4: Years of production hardening and addressing corner cases (years-decades)

« Each level is ~an order of magnitude more work
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Level 2: Defining “Right” and Proving It Automatically

Define what “right” means for a given engineering problem
«  Tolerances: Target range for a correct answer, absolute, relative, conditional
* Acceptable error rates, if applicable: Statistical affordances
*  Biggest acceptable outliers: Min/max
* Regions of interest where higher accuracy is needed
* Regions of disinterest where no answer is even needed

« E.g. +/- 2 ps absolute error, <2% relative error for voltages <0.7, 99.5% of the time; 5ps, 5% tolerable for voltages >=0.7
*  This is actually hard!

Designing an algorithm that can tell when ML-generated results are right, automatically
«  Automated spot checking with spacefill sampling
* Automated checking in regions of highest interest
*  Accuracy-aware modeling and automated checking in regions that have the widest model confidence intervals
«  Self-verifying algorithms by design
*  How would you prove it manually? Maybe do that?
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Getting to Level 3 With Solido-Style Active Learning

Initial Design of
Experiments

Accuracy-Aware
Supervised Learning

Target Areas of
Interest

Model Building
Optimization

Self-Verification

4

Knowledge Extraction

Start by simulating a small amount of the total space,
equally spread and covering all main and interaction effects

Build an accuracy-aware ML model that can very quickly
predict outcomes for the rest of the space

Use the predicted values to decide which cases are interesting
and simulate those; get simulation accuracy where it matters

Make the rest of the predictions adequately accurate; run
more simulations in areas of greatest uncertainty

Prove that the areas of interest are covered and that target
accuracy is achieved throughout the space

Help with insight and debugging by revealing dominant terms
in ML models
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Solido’s First Level 3 ML Solution: High-Sigma Monte Carlo (c.2008)

« Challenge: Monte Carlo and SPICE accurate high-sigma analysis

* Order of magnitude more simulations per 0.5 sigma!

4 ~1M

4.5 ~10M
5 ~100M

5.5 ~1B
6 ~10B

* Goal: MC and SPICE accuracy in 1000s of simulations
(because that is all we have time for in production flows!)
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Solido’s First Level 3 ML Solution: High-Sigma Monte Carlo (c.2008)

Solido Variation Designer - HSMC_Project - /var/home/kbreen/demos/sa_28/variation_designer
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Solido’s First Level 3 ML Solution: High-Sigma Monte Carlo (c.2008)

Run High:-Sigma MC (Beta) - HSMC-1
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Brute Force Monte Carlo
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Brute Force Monte Carlo

60 = 10 failures per 10,135,946,920
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What if...

60 = 10 failures per 10,135,946,920
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High-Sigma Monte Carlo
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1. Generate Monte Carlo
samples. Don’t simulate.



High-Sigma Monte Carlo
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1. Generate Monte Carlo
samples. Don’t simulate.

2. Simulate initial samples.



High-Sigma Monte Carlo

° g0 0 1. Generate Monte Carlo
oo, 0 samples. Don't simulate.

Simulate initial samples.

3. Sort all samples & simulate In
order.
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High-Sigma Monte Carlo applied
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High-Sigma Monte Carlo applied
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HSMC: Getting From Level 3to Level 4

2008: Invented — level 3

« Capacity: 1M samples

1000 process variables

- Continuous outputs only »
- 1 failure region

- Self-verification shown in logs

* Manual setup and operation
* Required stable simulation env.
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2021: Person decades later — nearing level 4

» Capacity: 1T samples

» 100K process variables

« All outputs (e.g. multi-modal, n-ary)

* N failure regions

« Self-verification GUI

* Fully adaptive; no expertise needed

- Handles, recovers from, and corrects sim failures



Toward Level 4: Finding and Fixing the Corner Cases

« This is the expensive part

« 100s of person years invested to date in going from level 3 to 4
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I Level 3to 4 Example:
Accurate ML Modeling for Jagged

Waveforms Using Better Descriptive
Parameters

Scott Johnston
James Marquez
Ken De Lathouwer
Megan Marsh

IEEE-EDPS 2021 - Getting The Right Answer with Machine Learning SI E M E N S



current (mA)

Modeling Jagged Waveforms is Hard

pg_current

0.002 A1

1.00e-03 A ‘

-1.00e-03 4

time (ns)
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voltage (V)

Waveforms are shapes, not
values

Accuracy of the shape is
really important

Jagged shapes are really
hard to model

Modeling the jagged shape
directly fails
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Modeling Jagged Waveforms Using Their Parameters

Peak time Observation: The general shape
po_current holds across input dimensions

«—Max value

4.00e-04 4

Observation 2: Waveforms are

defined by continuous numeric
Median time Max time parameters

l l

2.00e-04

current (mA)

Can we model and predict the
parameters of a waveform?

-2.00e-04

Can we use those predicted
parameters to morph the waveform
«—Min value to other input conditions?

0 0.25 0.5 0.75 1 1.25 1.5

time (ns)

-4.00e-04
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current (mA)

Absolute Area: Too Noisy to Model

pg_current

0.002 4

1.00e-03 4

-1.00e-03 -

27

0.1

time

Draw vectors
Max time
Peak time
Mid-area time
Median time
Max value
Min value
Peak value
Last value
Area

* Abs area
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voltage (V)

Abs area

Values calculated from pg_current vector

2.20e-05 4

2.00e-05 -
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/ 11
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08

voltage (V)

0.7

0.6

0.5

0.5

0.75

voltage (V)

SIEMENS



current (mA)

Area: Pretty Smooth — Models Well

0.002 4

1.00e-03 4

-1.00e-03 -

pg_current

l Vectors
Draw vectors

; o1 Max time
™ Peak time
Mid-area time
Median time
Max value
Min value
Peak value

Last value

Abs area
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Area

-1.60e-06 1

-1.80e-06 1

-2.00e-06 1

-2.20e-06 1
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-3.00e-06 4

Values calculated from pg_current vector
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current (mA)

Median Time: Not Bad - A Little Noisy

pg_current Values calculated from pg_current vector
0.002 4 11
0.35
1.00e-03 4 l’i 1
| 0.3 A
0.9
N
@
E s
c 0.25 4 i.’.
H V t 'ﬁ .'_..O" 0.8
-1.00e-03 - “% ectors = S
Draw vectors
Max time 0.2 1 07
' o S Peak time
Mid-area time
0.15 - 06
Max value
Min value ; : : 0s
0.5 0.75 1
Peak value voltage (V)
Last value
Area
Abs area
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current (mA)

Mid-Area Time: Smoother and Models Well

pg_current Values calculated from pg_current vector

0.002 4
0.4 1 11

1.00e-03 4

voltage (V)

09
0.3

08

Mid-area time
voltage (V)

| Vectors
Draw vectors
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Max time 07
0.2 4
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05

Min value o5 — .
Peak value voltage (V)
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Area
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Improvement by Modeling Jagged Waveforms Using Better Parameters

% In Tolerance % In Tolerance

(All corners) (WC Corners)

3
Original £
~200 ~500 z
parameters 80 L 50 /0 5
Best -1.00e-03
>990 >990
parameters 99% 99%
31 IEEE-EDPS 2021 - Getting The Right Answer with Machine Learning

pg_current

0.002 4

1.00e-03 A

11

0.9

08

voltage (V)

0.7

0.6

05

0.1 0.2 0.3
time (ns)

SIEMENS

Fw



ML CAD Tool Capability Levels

Level 0: No ML
Gives the right answer by running all cases. Often too compute-intensive for production use.

Level 1: Partially reliable ML
Big speedups. Sometimes right, sometimes wrong, and can't tell. Cool demo! Shows promise. Not useful, yet.

Level 2: Partially reliable ML with accuracy-aware self-verification

Can tell when it’s right or wrong based on accuracy criteria. Tool can’t solve it automatically. Need a backup plan.

Level 3: Adaptive, accuracy-aware ML with self-verification
Meets accuracy criteria on most cases automatically. Still the odd bump. Useful, with great support.

Level 4: Fully reliable, accuracy-aware ML with self-verification
Production-ready and dependable. Production hardened and proven. Just works. Use it.
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ML Levelquest and Effort

 Level 0to 1: Identifying and testing ML opportunities (hours-days)
« Level 1to 2: Defining what “accurate” means; making the algorithm self-verifying (weeks-months)
 Level 2to 3: Developing methods for achieving accuracy dynamically and automatically (months-years)

« Level 3to 4: Years of production hardening and addressing corner cases (years-decades)

« Each level is ~an order of magnitude more work
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Getting the Right Answer With Machine Learning

Levels 3 and 4 are useful for production engineering applications

Leveling up is hard, necessary, and has a ton of great research problems remaining
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| Thank you
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