

AI for EDA & EDA for AI Chip Designs

- More exploration, better PPA solutions
- Reduced schedules, faster product turnaround
- More products with current design teams

ML is Great for TTR, Almost always !!!

synopsys*

ML-Driven Technologies Throughout Implementation Improving PPA, Convergence and TTR SYSTEM DESIGN **3DIC Compiler** Synthesis MUX Congestion Optimization ME FUSION DESIGN PLATFORM **RTL** Architect Macro Placement Floorplan ME **Congestion Prediction Test Fusion** Route DRC Prediction Timing Prediction **Design Compiler** Place Opt ME · Adv. waveform & delay modeling NXT TestMAX CTS Clock Topology Optimization ME **Fusion Compiler** IC Compiler II Timing Prediction Clock Opt ML DRC Legalization · IR prediction and optimization Signoff Fusion Routing PrimeTime StarRC Formality / ECO **PrimePower** IC Validator **PrimeECO** Timing Prediction PrimeShield **RH** Fusion Route Opt ML IR sizing POST-SILICON Silicon Lifecycle Management

synopsys*

Machine-Learning Driven Digital Design and Signoff

"ML-everywhere" delivering better PPA, predictable flow convergence and faster TTR

Example in Analyzing ULV Variation Responses

- Variation responses at ULV corners display skewed behavior
 - $\,\circ\,$ 3-sigma values of interest occur in the skewed/tail areas of the response

- $_{\odot}$ Simulation is required to accurately model these areas
- \circ Identification of these areas is crucial to managing performance and minimizing simulation effort
- •ML provides a good approach to addressing this challenge

Machine Learning-Driven Custom Design

"ML-everywhere" enables higher design productivity and faster design-to-signoff TAT

DRC: User-site ML Model Training

• ML models shipped with IC Validator binary

- User can train the model using own data
- User site training available in 2021.06

Machine-Learning Driven Verification

1.25X faster FPGA compile15% better timing QoR1.5X better compile resource usage

2X productive debug with Regr. Debug Automation

synopsys*

Proteus Machine Learning Models Offer Reduce QOR / TAT

- Machine learning OPC models provide better QOR than conventional models
 - Enables continued scaling
- ML resist models also provide faster turnaround time Up to 2x runtime reduction
- Machine learning models validated by 4 major semiconductor fabs

Synopsys Confidential Information

Machine Learning Correction Solutions Offer Improved QOR/TAT

- ML OPC and ILT correction with traditional models provides 2-3x runtime reduction compared to traditional OPC
 - ML models with ML correction provides an additional 2x runtime reduction with up to 2x improved QOR
- ML ILT for AF generation with traditional OPC provides full-ILT QOR but 5-10x faster than ILT
- ML ILT / OPC hybrid flows (Elastic OPC) offers ILT-like freeform correction but with OPC runtimes (10x faster)

DSO.ai – Al-driven Design Space Optimization

Industry's first AI application enables autonomous search for design targets

- Breakthrough reinforcement learning engine
 Capable of exploring trillions of design recipes
- Multi-objective design space optimization
 High-quality results from feasibility to closure
- Fully-integrated with Fusion Design Platform
 - Fast ramp-up through industry's richest technology foundation
- Cloud-ready for fast deployment
 - Supports on-prem, public, and hybrid clouds

synopsys*

Synopsys Confidential Information

DSO.ai: A Leap Forward In Design Productivity

Meeting design targets faster and with fewer resources across market verticals

Alfor EDA & EDA for Al Chip Designs

DLA (Deep Learning Accelerators) is Everywhere

ICs Across All Markets to have AI Capabilities

Strong Demand for AI Processing Hardware

Al Market Projected To Grow to \$36.8B by 2025

Artificial Intelligence Revenue, Top 10 Use Case, World Markets 2025 (M)

Chip Design: Al Accelerator Challenges

Synopsys is behind many Al Chips

Leading GPU (NA) 5,000+ Cores 100+ TOPS Deep Learning

Al Accelerator (EU) 800+ mm² 23+B transistors

Al Accelerator (AP) 400+ mm² 100+ TOPS Deep Learning

Design Challenges

Synopsys's full-flow design platform for Al Accelerator

Latest Mobile AP (NA) CNN Engine 7nm

Automotive SoC (AP) Level 3/4 ADAS 300mW CNN Engine

Drone SoC (AP) 12nm Al IP Core 800MHz @ <3mm²

© 2021 Synopsys, Inc. 20

Broad Range of Al Accelerator Architectures

Various AI applications drive Dedicated Architecture in Hardware

The need for exploring for better architecture for specific applications

The optimal compute architect will vary by use case

Source: McKinsey & Company

At both data centers and the edge, demand for training and inference hardware is growing

The preferred architectures for compute are shifting in data centers and the edge

Source: McKinsey & Company

Synopsys Confidential Information

That's how an application specific DLA architecture is defined

The actual DLA Design Exploration Space is HUGE

Challenges:

Long exploration time, can be months; Limited exploration space; Engineering load intensive; High cost of human capital;

Should the architecting be automated?

synopsys*

Synopsys Confidential Information

Thank You