Materials Data in Electrical Device Design

Andrew Miller, Prof. David Cebon, Jean-Marc Lucatelli Ansys Granta, Cambridge, UK

Materials Data in Electrical Device Design

- The Importance of Materials & Materials Data
- Materials Data Management
- Integrated Computational Materials Engineering (ICME)
- Case Study: CORNET Project & Organic Electronics

Why materials information matters

Materials information throughout the product lifecycle

GRANTA MI – 'gold source' for corporate material intelligence

Critical system requirements:

- Specialist materials data structures
- Tools to manage the materials data lifecycle

- Full traceability
- Access and change control, workflow

Ansys Granta: Materials Information for all Physics

//nsys

Materials challenges in EM design

Automotive Radar

Used for safety, navigation and driver assistance

- Antenna and sensors in close proximity to structure & bodywork
- Need to control scattering of beam
- Need dielectric properties of automotive materials at 24 & 76 GHz


```
High Speed PCBs
```

5G networks increasing data rates and frequency of PCBs

- Materials start to influence performance: PCB materials, effects of weave in PCB, surface roughness of copper
- SI simulation needs dielectric properties of PCB and packaging materials over a wide frequency range and which meet causality requirements

Electric Motor Design

Automotive require lightweight, compact and quiet motors

- Coupled EM, mechanical and thermal analysis need multiphysics approach to materials
- *Magnetic*, *Mechanical* and *Thermal* properties required, all at elevated temperatures

Importance of accurate materials properties: PCB Laminates

- Variation with material grade
 - Resin & resin content
 - Reinforcement type and style
 - Thickness of laminate and copper
 - Surface roughness

Variation with operating condition

Multiphysics

Materials form a common link between multiphysics simulations

Multiscale modelling

Ansys

ICME: Integrated Computational Materials Engineering

//nsys

Case Study: Materials Data for Organic Electronics

CORNET Project

CORNET Project

- CORNET Project : Multiscale Modelling and Characterization to Optimize the Manufacturing Processes of Organic Electronics Materials and Devices
- It is a 3 years research project funded by European Union under Horizon 2020 funding scheme (DT-NMBP-07-2017 call)
- It covers the triangle of manufacturing, modelling and experimentation to optimize the OPVs, PPVs, OLEDs
- It aims to develop a data management system for Organic Electronics (OE) materials information accommodating manufacturing process parameters, test and simulation data and agreed metadata
- https://www.cornet-project.eu/

CORNET: Organic electronic industry challenges

Photoactive layer:

Amorphous Donor-Acceptor blend

Organic Photovoltaics (OPVs)

- Light weight, flexible, low cost, printable
- Environmentally friendly
- Easy installation, ideal for complex surfaces

But...

- Low Power Conversion Efficiencies (<15%)
- Poor lifetimes (~1yr)
- Low carrier mobilities (10⁻⁶-10⁻²cm²/Vs)

OPV Performance: strongly depends on materials used and processing conditions

Non-Global, Non-Well-defined materials and process models as in Si-based PVs

CORNET: Multiscale Modelling of OE materials

from electrons	n electrons				
electronic	atomistic	mesoscale	macroscale		
Schrodinger equation for electrons	equations of motion for atoms & molecules	domains & stochastic charge transport	Drift-diffusion for carriers		

Modelling Protocols

- Physics
- Approximations
- Numerical procedure

Data Management

- Data analysis tools
- Visualization
- Post-Processing

CORNET: Multiscale Modelling Protocols for OEs

CORNET: Characterisation of Multilayer Devices

CORNET: Materials Data Management Structure

CORNET: Summary of Developments

•	🚺 Colu	n Qi	antities:			
٠	Column	1:	Sweep 1 - Ra	amp Rate (V/:	a)	
٠	Column	2:	Sweep 2 - in	active		
٠	Column	3:	Time (s)			
٠	Column	4:	Light Intens	sity (1)		
٠	Column	5:	LED Current	(A)		
٠	Column	6:	Device Volta	age (V)		
٠	Column	7:	Device Curre	ent (A)		
٠	Column	8:	Raw Voltage	1 (V)		
٠	Column	9:	Raw Voltage	2 (V)		
٠	Column	10:	: Voltage Pho	otodetector	(V)	
٠	Column	11:	RC Current	(A)		
٠	Column	12:	Luminance	(cd)		
٠	Column	13:	Applied Vol	Ltage (V)		
٠						
1.	. 0000001	E+3	0.000000E+0	-1.462500E-3	6.091039E-7	-7.842012E
1.	.000000	E+3	0.00000E+0	-1.453356E-3	6.091039E-7	-7.518445E
1.	. 000000	E+3	0.000000E+0	-1.444211E-3	6.091039E-7	-7.364707E
1.	.000000	E+3	0.00000E+0	-1.435067E-3	6.091039E-7	-7.371392E
1.	. 0000001	E+3	0.000000E+0	-1.425923E-3	6.091039E-7	-7.421090E
1.	. 000000	E+3	0.00000E+0	-1.416779E-3	6.091039E-7	-7.264443E
1.	.000000	E+3	0.00000E+0	-1.407634E-3	6.091039E-7	-7.110192E
1	.000000	E+3	0.00000E+0	-1.398490E-	6.091039E-7	-6.889497E
п.,	000000	r + 7	0 0000000000000000000000000000000000000	-1 300346F-1	E 001030E-7	-7 3520028

PROTOCOL

Data management for OE based on GRANTA MI technology Capture of physical test data from electrical, structural and optical characterisation of OE devices, layers and materials

Collection of multiscale materials modelling results and facilitation of model validation against physical test data

Digitalisation of characterisation and model validation protocols and capture of agreed metadata

CORNET: Acknowledgements & Contacts

University of Ioannina:

- Prof. Eleftherios Lidorikis, CORNET PI
 - <u>elidorik@uoi.gr</u>
 - +302651007146
- Prof. Dimitrios Papageorgiou
 - <u>dpapageo@uoi.gr</u>
- K. Kaklamanis, M. Andrea, K. Kordos, P. Palomino

Ansys Granta:

- Jean-Marc Lucatelli (Cornet schema and GRANTA MI database development)
- Andrea Berto, Davide Di Stefano, Ludovic Steinbach, David Cebon, Nic Austin, Donna Dykeman (ICME schema)
- Dr. Donna Dykeman, Programme Manager, Collaborative R&D
 - <u>Donna.Dykeman@ansys.com</u>
 - +44(0)1223218000

This Project has received funding from the European Union's HORIZON 2020 research and innovation programme under grant agreement no 760949

