

Al-Enabled Agile IC Design and Manufacturing

David Z. Pan The University of Texas at Austin http://www.ece.utexas.edu/~dpan

IC Design/Manufacturing Complexity

What you see (at design) is not (necessarily) what you get (at fab)

Divide a chip into small partitions e.g., 1~2M cells per partition

Turn-around time for 1 iteration of backend flow: 3~6 days for one partition

IC Design/Manufacturing Flow

Nanometer Design/Manufacturing Challenges

How AI (ML/DL) Can Help?

Lots of work for various stages of physical design and DFM

- For example on lithography hotspot detection
 - Our work [Ding+, ICICDT 2009 BPA] among the first to use ML (SVM) for litho-hotspot detection

- > Very active research in last 10 years, ICCAD 2012 CAD Contest
- Meta-classification combining ML and PM [Ding+, ASPDAC'12 BPA]
- Deep neural network [Yang+, DAC'17]
- Big data vs. small data; transfer/active/semi-supervised learning [Lin+, ISPD'18], [Chen+, ASPDAC'19], Litho-GPA [Ye+, DATE 2019]...

ML and PD Tutorial in July 2019 (ACM/IEEE Seasonal School)

- http://yibolin.com/publications/tutorials/PDSeasonableSchool_ML4PD.pdf
- My talk today will cover some recent ideas/results for discussion

DREAMPlace: <u>Deep Learning Toolkit-Enabled</u> GPU <u>Acceleration for Modern VLSI Placement</u> [Lin+, DAC'19, Best Paper Award]

Source code release: <u>https://github.com/limbo018/DREAMPlace</u>

Typical Nonlinear Placement Algorithm

$$\begin{array}{c|c} \min_{\mathbf{x},\mathbf{y}} & \sum_{e \in E} \mathrm{WL}(e; \mathbf{x}, \mathbf{y}), \\ s.t. & D(\mathbf{x}, \mathbf{y}) \leq t_d \\ \hline \\ \hline \\ \mathbf{Objective of nonlinear placement}} \\ \min & (\underbrace{\sum_{e \in E} \mathrm{WL}(e; \mathbf{x}, \mathbf{y}))}_{\mathrm{Wirelength}} + \lambda D(\mathbf{x}, \mathbf{y}) \\ \hline \\ \hline \\ \end{array} \right)$$

Many papers on how to model WL, density, parameter tuning, etc.

- Huge development
 effort on a high-quality
 placement engine (e.g.,
 > 1 year for RePIAce)
- CPU>3h to get good quality placement of 10M-cell design
- Clustering/acceleration limited → quality degradation

What is your Dream Placement Engine?

- ✓ Best quality: wirelength →
 congestion, timing, power, …
- ✓ Ultrafast: placement is at the center of entire design flow → faster design turn-around-time
- ✓ Low development overhead: → from 1 year to a month or two?
- Extensible: easy to try new algorithms and acceleration techniques

Advances in Deep Learning Hardware/Software

Over **60x** speedup in neural network training since 2013

Deep learning toolkits

 We propose a novel analogy by casting the nonlinear placement optimization into a neural network training problem

 Greatly leverage deep learning hardware (GPU) and software toolkit (e.g., PyTorch)

 Enable ultra-high parallelism and acceleration while getting state-of-the-art results

Analogy Between NN Training and Placement

$$\min_{\mathbf{w}} \sum_{i}^{n} f(\phi(x_i; \mathbf{w}), y_i) + \lambda R(\mathbf{w})$$

Forward Propagation (Compute obj)

Backward Propagation (Compute Gradient $\frac{\partial obj}{\partial w}$)

Train a neural network

$$\min_{\mathbf{w}} \sum_{i}^{n} WL(e_i; \mathbf{w}) + \lambda D(\mathbf{w})$$

Backward Propagation (Compute Gradient $\frac{\partial obj}{\partial w}$)

DREAMPlace Architecture & Overall Flow

Leverage mature/highly optimized deep learning toolkit

DREAMPlace architecture

DREAMPlace flow

Global Placement Result Comparison

DREAMPlace Open-Sourced

- Leverage AI hardware and software development recently
- Decouple core algorithm innovations with implementation
 - > Algorithm innovation written in high-level language, e.g. Python
 - > Highly extensible: new solver options, new design objectives, ...
 - > Implementations just focus on certain low-level kernel OPs as needed
- ♦ Development effort: 1 year → 2 months
- The paradigm can be extended to other DA areas
 - Significantly enhance IC design productivity and quality

MAGICAL: <u>Machine</u> <u>Generated</u> <u>Analog</u> <u>IC</u> <u>Layout</u>

Open source MAGICAL 0.2 https://github.com/magical-eda/MAGICAL

Analog IC Layout

- DREAMPlace focus on digital IC
- Analog IC to interface with outside world
- Analog IC layout design still mostly manual
 - > Very tedious and error-prone
 - > Prior DA not successful as that in digital IC

- Our mission is to develop a full-automated analog layout system, leveraging recent AI advancement
- Project started in 08/2018
- [ISPD'19; DAC'19; ICCAD'19; ASPDAC'20]

MAGICAL Layout System Framework

- Input: unannotated netlist
 Output: GDSII Layout
- Key Components:
 - Constraint Extraction
 - > Device Generation
 - > Placement
 - > Routing

Fully-automated (no-human-in-the-loop)

 Guided by analytical, heuristic, and machine learning algorithms (not everything is machine learning or deep learning!)

MAGICAL Preliminary Results

A comparator design in 40nm TSMC

Manual Layout (taped out)

MAGICAL Layout

	MAG		
Days	Sec	on	
Manual	MAGICAL		
16.8	18.7		
150	152		
380	334		
0.15	0.50		
	Days Manual 16.8 150 380 0.15	Days Sec Manual MAGICAL 16.8 18.7 150 152 380 334 0.15 0.50	

MAGICAL Preliminary Results

A 2-stage miller-compensated OTA design in 40nm TSMC

Post extraction simulation results

Manual Layout

MAGICAL Layout

	Manual	MAGICAL
DC Gain (dB)	37.7	38.0
Unity-gain Bandwidth (MHz)	110	107.5
Phase Margin (degree)	67.8	62.3
Input-referred Noise (uVrms)	219	221.5
CMRR (dB)	103	92.5
Input-referred Offset (mV)	0.2	0.48

LithoGAN: End-to-End Lithography Modeling with Generative Adversarial Networks [Ye+, DAC'19 BPA Candidate]

Harder question cf. lithography hotspot detection: Without going through litho-simulations, can we directly get printed images?

GAN and CGAN

Generative Adversarial Network (GAN) [Goodfellow et al, 2014]

- > Two neural networks contest (Generator and Discriminator)
- > Produce images similar to those in the training data set
- Conditional GAN (CGAN) can take a picture in one domain and translate it to another one [Isola et al, CVPR'17]

Image Translation for Litho Modeling

[Ye+, DAC'19]

 Different elements encoded on different image channels Resist pattern zoomed in for high-resolution/accuracy

CGAN for Lithography Modeling

CGAN architecture

- > Generator G generates a fake resist pattern G(x) with input mask pattern x
- Discriminator D needs to classify the image pair (x, G(x)) as fake and to predict the image pair (x, y) as real

Overall LithoGAN Algorithm

Dual learning framework

- > CGAN to predict the shape of the resist pattern
- > CNN to predict the resist shape center

[Ye+, DAC'19]

LithoGAN Results

[Ye+, DAC'19]

LithoGAN is **1800x** faster than rigorous simulations, with acceptable error (in consultation with industry)

GAN-SRAF [Alawieh+, DAC'19]

- Sub-Resolution Assist Feature Generation using Conditional Generative Adversarial Networks
- Directly generate sub-resolution assist feature (SRAF)
- 144x faster than model based approach with similar QoR

Target Pattern

SRAF

LAPD

- ◆ To bridge design and manufacturing, we propose Lithography Aware Physical Design (LAPD) →
 - > Litho Hotspot Detection
 - > Litho Hotspot Correction
- My group has made many key contributions in LAPD 1
- LithoGAN opens new directions with tremendous potential

Detection

Correction

Design/Manufacturing for Hardware Security

Global IC supply chain of design, manufacture, test, package...

Image source: https://depositphotos.com/2801291/stock-illustration-gray-detailed-world-map.html

Design/Manufacturing for Hardware Security

- Arm race between attacking and protection
- Hardware IP reverse engineering using learning techniques
- Intelligent IC camouflaging [Li+, ICCAD'16, TCAD'17, HOST'17 BPA]
- Former PhD Meng Li won ACM SRC Grand Finals First Place in 2018

Conclusion

- Some recent results in AI-enabled agile IC design & DFM
 - > DREAMPlace
 - > MAGICAL: GeniusRoute...
 - > LithoGAN
- Tremendous potentials to leverage both AI hardware and software advancements
- BIG data, small data, or no (training) data at all (by recasting problems e.g., placement into DREAMPlace)
- Synergistic AI-IC co-design

Acknowledgment

- Funding support / collaborations from NSF, DARPA, Intel, Nvidia, Toshiba Memory, Xilinx, Synopsys
- Many students/post-docs who do the real work
- Many collaborators in academia and industry
 - > Dr. Ren and Dr. Khailany from NVIDIA for DREAMPlace
 - > Prof. Nan Sun at UT for MAGICAL
 - > Dr. Nojima et al. from Toshiba Memory on DFM

Thanks!

Q&A?

