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IC Design/Manufacturing Complexity
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IC Design/Manufacturing Flow
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Nanometer Design/Manufacturing Challenges

L Performance/Power/Area PPA

+ Manufacturability/Yield
¢+ Reliabllity

+SecUDARPA Grand Challenge ‘No-human-.

A. Olofsson, DARPA, ISPD-2018 Keynote

@ Has EDA failed to keep up with Moore's Law?

Cost ($M)

10B

*Tumin-the-loop, 24-hour turn around tlrpego

¢+ 2018 DARPA ERI ($1.5B)
IDEA/POSH “Hardware
Compiler” ($100M)




How Al (ML/DL) Can Help?

$ Lots of work for various stages of physical design and DFM

¢ For example on lithography hotspot detection

> Our work [Ding+, ICICDT 2009 BPA] among the first
to use ML (SVM) for litho-hotspot detection

» Very active research in last 10 years, ICCAD 2012 CAD Contest
» Meta-classification combining ML and PM [Ding+, ASPDAC’12 BPA]
» Deep neural network [Yang+, DAC'17]

» Big data vs. small data; transfer/active/semi-supervised learning [Lin+,
ISPD’18], [Chen+, ASPDAC’19], Litho-GPA [Ye+, DATE 2019]...

¢ ML and PD Tutorial in July 2019 (ACM/IEEE Seasonal School)
» http://yibolin.com/publications/tutorials/PDSeasonableSchool ML4PD.pdf

¢+ My talk today will cover some recent ideas/results for discussion



http://yibolin.com/publications/tutorials/PDSeasonableSchool_ML4PD.pdf

DREAMPIlace: Deep Learning Toolkit-Enabled
GPU Acceleration for Modern VLSI Placement
[Lin+, DAC’19, Best Paper Award]

Source code release: https://github.com/limbo018/DREAMPIlace



https://github.com/limbo018/DREAMPlace

Typical Nonlinear Placement Algorithm

min Z WL(€§ X, Y)a Many papers on how to
WY CE model WL, density,
parameter tuning, etc.
st. D(x,y) <tq Huge development
effort on a high-quality
‘ placement engine (e.qg.,
o _ > 1 year for RePlAce)
Objective of nonlinear placement CPU>3h to get good
min (ZeeE WL(e;x,y)) + AD(x,y) quality placement of
N Y 10M-cell design
v o Clustering/acceleration
Wirelength Density

limited =» quality
degradation




‘What is your Dream Placement Engine?

10M-cell design
finishes within
5min

v Best quality: wirelength =
congestion, timing, power, ...

v Ultrafast: placement is at the
center of entire design flow =
faster design turn-around-time

v' Low development overhead: =
from 1 year to a month or two?

v Extensible: easy to try new
algorithms and acceleration
techniques




Advances in Deep Learning Hardware/Software
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Over 60x speedup in neural
network training since 2013

Deep learning toolkits



DREAMPIlace Strategies

¢+ We propose a novel analogy by casting the nonlinear
placement optimization into a neural network training problem

¢ Greatly leverage deep learning hardware (GPU) and software
toolkit (e.g., PyTorch)

¢+ Enable ultra-high parallelism and acceleration while getting
state-of-the-art results
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Analogy Between NN Training and Placement

min Y ~ f(¢(zs; W), y:) + AR(W) min » ~WL(e;; w) + AD(w)
Forward Propagation Forward Propagation
(Compute obj) (Compute obj)
Data Neural Error Net Neural Error
Instance o Network Function Instance > Network N Function
(i) 7 B(sw) (i w), pi) (€i,0) 7| WL(;w) ["WL(es; w)
Backward Propagation Backward Propagation
(Compute Gradient BObJ) (Compute Gradient BObJ)

Train a neural network “ Solve a placement
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DREAMPIlace Architecture & Overall Flow

Leverage mature/highly optimized deep learning toolkit

Placement Random Initial Placement
API
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DREAMPIlace architecture DREAMPIlace flow
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Global Placement Result Comparison

RePlAce [Cheng+, TCAD’18] DREAMPIlace [Lin+, DAC'19]
e CPU: 24-core 3GHz Intel Xeon e CPU: Intel E5-2698 v4 @2.20GHz

 64GB memory allacated
* Current state-of-
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Instead of 3+ hrs
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ISPD 2005 Benchmarks PR Industrial Benchmarks 33
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C 13



DREAMPIlace Open-Sourced

¢ Leverage Al hardware and software development recently

¢ Decouple core algorithm innovations with implementation
» Algorithm innovation written in high-level language, e.g. Python
» Highly extensible: new solver options, new design objectives, ...
» Implementations just focus on certain low-level kernel OPs as needed

¢ Development effort: 1 year = 2 months

¢ The paradigm can be extended to other DA areas
» Significantly enhance IC design productivity and quality
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MAGICAL: Machine Generated Analog IC Layout

Open source MAGICAL 0.2
https.//github.com/magical-eda/MAGICAL
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https://github.com/magical-eda/MAGICAL

Analog IC Layout

‘ + DREAMPIlace focus on digital IC
¢ Analog IC to interface with outside world

¢ Analog IC layout design still mostly manual
» Very tedious and error-prone
> Prior DA not successful as that in digital IC

* Our mission is to develop a full-automated analog layout
system, leveraging recent Al advancement

* Project started in 08/2018

« [ISPD’19; DAC19; ICCAD19; ASPDAC’20]
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MAGICAL Layout System Framework

\0 Input: unannotated netlist
¢ Output: GDSII Layout

¢+ Key Components:
Constraint Extraction
Device Generation
Placement

Routing
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v
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¢ Fully-automated (no-human-in-the-loop)
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MAGICAL Preliminary Results

‘ + A comparator design in 40nm TSMC

egd b by I
BLHE

|
|
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| |

Ay gk i |ﬂ
e D—roi Fl_:;i' ‘% —a m ______.‘ u :
D_.ﬁlf aannnmng
_ _ _ Manual Layout (taped out) MAGICAL Layout
Post extraction simulation results D

N N e T O O S

Power (uW) 16.8 18.7

Output Delay (ps) 150 152

Input-referred Noise (uVrms) 380 334

Input-referred Offset (mV) 0.15 0.50
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MAGICAL Preliminary Results

‘ ¢ A 2-stage miller-compensated OTA design in 40nm TSMC

Gain Path Common-mode Feedback i

Post extraction simulation results Manual Layout MAGICAL Layout
| Manual | MAGICAL
DC Gain (dB) 37.7 38.0
Unity-gain Bandwidth (MHZz) 110 107.5
Phase Margin (degree) 67.8 62.3
Input-referred Noise (uVrms) 219 221.5
CMRR (dB) 103 92.5

Input-referred Offset (mV) 0.2 0.48



LithoGAN: End-to-End Lithography Modeling
with Generative Adversarial Networks
[Ye+, DAC’19 BPA Candidate]

Harder question cf. lithography hotspot detection: Without going
through litho-simulations, can we directly get printed images?
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GAN and CGAN

Generative Adversarial Network (GAN) [Goodfellow et al, 2014]
Two neural networks contest (Generator and Discriminator)
Produce images similar to those in the training data set

Conditional GAN (CGAN) can take a picture in one domain and
translate it to another one [Isola et al, CVPR'17]

"Generative Adversarial Networks is the most interesting
idea in the last ten years in machine learning."
Yann LeCun, Director, Facebook Al




Image Translation for Litho Modeling [Ye+, DAC'19]

o

O .%.i [l e

Expensive Litho Simulation o oo

Encode into, .
RGB
channels

This Is now a
(modified) image
translation tas

256
256

256
¢+ Different elements encoded ¢ Resist pattern zoomed in for

on different image channels high-resolution/accuracy
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CGAN for Lithography Modeling [Ye+, DAC19]

SRAE Contact after OPC G(x)
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AN c @

D Real
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0 I . p— - - « : :I: :-:-:-_--
1 g - |I'II - |,
¢

Sample pairs for training CGAN

¢+ CGAN architecture
» Generator G generates a fake resist pattern G(x) with input mask pattern x

» Discriminator D needs to classify the image pair (x, G(x)) as fake and to
predict the image pair (X, y) as real
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Overall LithoGAN Algorithm [Ye+, DAC19]

¢ Dual learning framework
> CGAN to predict the shape of the resist pattern
> CNN to predict the resist shape center

/Prediction { CGAN ]_,

>
Predicted [
Ground truth R

Center
CGAN Output — CNN (Ch, Cy) Post-adjustment
(Final)

Generated
Image

Pre-adjustment

3
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LithoGAN Results

[Ye+, DAC19]
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LithoGAN Is 1800x faster
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consultation with industry)
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GAN-SRAF [Alawieh+, DAC’19]

\ ¢ Sub-Resolution Assist Feature Generation using Conditional
Generative Adversarial Networks

¢ Directly generate sub-resolution assist feature (SRAF)
¢ 144x faster than model based approach with similar QoR

B TargetPattern [l SRAF
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LAPD

Another LAPD

¢ To bridge design and manufacturing, we
propose Lithography Aware Physical

Design (LAPD) =
» Litho Hotspot Detection

» Litho Hotspot Correction

¢+ My group has made many key

contributions in LAPD

T

¢ LithoGAN opens new directions with

tremendous potential

Correction



Design/Manufacturing for Hardware Security

‘ ¢ Global IC supply chain of design, manufacture, test, package...

Image source: https://depositphotos.com/2801291/stock-illustration-gray-detailed-world-map.html
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Design/Manufacturing for Hardware Security

\ ¢+ Arm race between attacking and protection

¢+ Hardware IP reverse engineering using learning techniques

¢+ Intelligent IC camouflaging [Li+, ICCAD’16, TCAD’17, HOST' 17 BPA]
¢ Former PhD Meng Li won ACM SRC Grand Finals First Place in 2018
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To Recap
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Conclusion

‘ ¢+ Some recent results in Al-enabled agile IC design & DFM
» DREAMPIlace
> MAGICAL: GeniusRoute...
> LithoGAN

¢+ Tremendous potentials to leverage both Al hardware and
software advancements

¢+ BIG data, small data, or no (training) data at all (by recasting
problems e.g., placement into DREAMPIlace)

¢ Synergistic Al-IC co-design
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