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Simulations in Product Development
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Saturating Performance Gains with Traditional HPC

High 

$$$
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Motivation: Evolving Platform with Mass Customization 

Customized Developments for Audi’s OpenFOAM Processes, Richard Borris, Audi AG, Oct. 2016

CFD Aerodynamics Optimization:

Computationally Intensive

Answer: AI powered Simulations!
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AI in Computational Mechanics 
& 

Sciences  
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AI Powered Computational Domains
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AI benefits in Computational Mechanics & Sciences 
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Improved 

Physics & 

Predictions

Best Design: AI provides fast 

simulation surrogate that 

allows increased sampling of 

many models for optimization  

Higher Accuracy:

replacement of empirical 

models by neural networks 

trained on highly accurate 

Physics results or experiments

Improved Time to Decision:

getting rapid results for a single 

model using inferencing in a 

trained neural network 

Augment Trade Expert’s 

Experience with Quantification:

discovering hidden Physics by 

assimilating data from 

observation with calculations

Robotics

Digital Twin - IoT/Simulation  

Aneurysm
Full Wave Inversion

Heat Sink Vias on a PCB
Radiation

Turbulence
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Data Driven Neural Networks 
(DDNNs)
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Automotive Aerodynamics 

InferenceTraining
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Comparisons of various Point Cloud based NN  
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Data Driven Methods
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- Need to generate a lot of Simulations

- No Physics Awareness

- Not very efficient for Complex 3D Geometries/Curved Surfaces

- Interpolation/Extrapolation Errors

+ Not dependent on Physics 
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Physics Informed Neural Networks 
(PINNs) 
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Physics Informed Neural Nets: Architecture
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A Neural Network Architecture for Computational Mechanics/Physics problems

❑ Point Cloud for 3D Geometries & Meshes (Fixed/Moving, Deforming, Structured & Unstructured)

❑ Physics Driven & Physics Aware Networks (respects the governing PDEs, Multi-disciplinary) 

❑ Performance optimized for GPU tensor cores

PINN - Physics Informed Neural NetworksPoint Cloud representation of Computational Domain 

& Data on 3D Geometries
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Shape Parameterization

• Voxels

• Multi-View

✓ Point Cloud

• Poly Cube 

• Good for CNNs but memory intensive for high resolution and 

inefficient due to unoccupied voxels. 

• Introduces quantization effects for inter- & extrapolation when 

using CNN, accuracy for Physics problems is questionable

• Unable to capture fine geometry details & gradients and 

completely unsuitable for Physics problems

• One-to-one correspondence with analysis data format.

• Works for LIDAR based geometry or uneven density and 

unstructured meshes. Perfect for Physics problems

• Will require integration into CAD tools in order to regenerate 

uniform mesh and then invoke CNN structure  

• Will retain the deficiencies of Voxel based CNNs

• Does not address legacy analysis results 
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Loss and Output

Loss Function 
✓ Physics based: Conservation of Mass, 

Momentum & Energy, Strain Energy etc.)

PINN - Physics Informed Neural Networks

Physics laws present constraints –
• Governing differential equations

• Constitutive models 
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Workflow –
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PINN - Physics Based Neural Networks
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Mass conservation:

Momentum conservation:

Transport:

Hidden Physics Models in CFD: 
Infer hidden quantities of interest fields from spatial-temporal 
visualizations of a passive scaler (e.g., dye or smoke) leveraging 
the underlying Physics laws (i.e., mass, momentum & energy) 

Discovering Hidden Physics  
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External Flow past a Cylinder – Learnt vs. Ground Truth 

CFD Simulation of an External Flow 

over a Cylinder with OpenFOAM –

A user error was incidentally 

discovered by the PINNs that  

presented itself as a mismatch 

between the Simulation & AI result !!!

Correct CFD Simulation 

Results with OpenFOAM

(Ground Truth)

Correct Predictions
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Intracranial Cerebral Aneurysm (ICA) 
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ICA – Comparison between Simulation & NN

Cut along Z-Plane
Cut along Y-Plane

Cut along X-Plane
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ICA – Comparison between two CFD Solvers

OpenFOAM v/s Neural Networks Nektar++ v/s Neural Networks

➢ Nektar++ is a higher fidelity 

solver (implicit, h- & p- method 

based finite element CFD code) and 

provides higher quality results with 

less diffusion
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Heat Sink

Heat Sink –
* Temperatures to not exceed the design criteria

Objectives –
* Similar accuracy as the Solver 
* Geometry representation with Point Clouds
* Multiple simultaneous parametrized & 

unparametrized geometries

Physics involved – CFD & Heat Transfer 

Ansys IcePack used for Simulation (** we kindly acknowledge Ansys’s support **)
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Heat Sink – Conjugate Heat Transfer   

Mean Square Error

Loss 

Point Clouds used for modeling Geometry 
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Heat Sink – Conjugate Heat Transfer   

Turbulence modeled
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Conclusion 
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Executive Summary

Neural network for simulation workflows: 

✓ Higher Performance: gains on CPU are fast approaching saturation point. AI 

speeds up the “time-to-insight, design, manufacture and service”

✓ Broader application areas: Never before imagined scientific simulations use-

cases are now possible with AI  

✓ Broader user base: Increased ease-of-use and robustness in the simulation 

workflow will enable increased number of users with little simulation expertise


