### Physics Informed Neural Networks Convergence of HPC & AI domains

- Sanjay Choudhry NVIDIA

### **Simulations in Product Development**



## Saturating Performance Gains with Traditional HPC



# Motivation: Evolving Platform with Mass Customization



#### CFD Aerodynamics Optimization: Computationally Intensive

#### **Answer: AI powered Simulations!**



Customized Developments for Audi's OpenFOAM Processes, Richard Borris, Audi AG, Oct. 2016

#### Al in Computational Mechanics & Sciences

# **AI Powered Computational Domains**

| Computational<br>Mechanics | Earth Sciences         | Life Sciences | Computational<br>Physics | Computational<br>Chemistry |
|----------------------------|------------------------|---------------|--------------------------|----------------------------|
| Solid Mechanics            | Climate Modeling       | Genomics      | Particle<br>Science      | Quantum Chemistry          |
| Fluid Mechanics            | Weather Modeling       | Proteomics    | Astrophysics             | Molecular Dynamics         |
| Electromagnetics           | Ocean Modeling         |               |                          |                            |
| Thermal                    | Seismic Interpretation |               |                          |                            |
| Acoustics                  |                        |               |                          |                            |
| Optics                     |                        |               |                          |                            |
| Multi-body Dynamics        |                        |               |                          |                            |
| Systems                    |                        |               |                          |                            |
| Electrical                 |                        |               |                          |                            |
| Designer Materials         |                        |               |                          |                            |

## Al benefits in Computational Mechanics & Sciences



**Training Data** 

Large to Very Large

Driver

Primary

Small to Medium

#### Data Driven Neural Networks (DDNNs)

### **Automotive Aerodynamics**







## **Comparisons of various Point Cloud based NN**



## **Data Driven Methods**

- Need to generate a lot of Simulations
- No Physics Awareness
- Not very efficient for Complex 3D Geometries/Curved Surfaces
- Interpolation/Extrapolation Errors
- + Not dependent on Physics



#### Physics Informed Neural Networks (PINNs)

## **Physics Informed Neural Nets: Architecture**

#### A Neural Network Architecture for Computational Mechanics/Physics problems

**D** Point Cloud for 3D Geometries & Meshes (Fixed/Moving, Deforming, Structured & Unstructured)

Physics Driven & Physics Aware Networks (respects the governing PDEs, Multi-disciplinary)

#### □ Performance optimized for GPU tensor cores



Point Cloud representation of Computational Domain & Data on 3D Geometries

# **Shape Parameterization**





#### Multi-View



- Good for CNNs but memory intensive for high resolution and inefficient due to unoccupied voxels.
  - Introduces quantization effects for inter- & extrapolation when using CNN, accuracy for Physics problems is questionable
  - Unable to capture fine geometry details & gradients and completely unsuitable for Physics problems

- One-to-one correspondence with analysis data format.
- Works for LIDAR based geometry or uneven density and unstructured meshes. Perfect for Physics problems
- Will require integration into CAD tools in order to regenerate uniform mesh and then invoke CNN structure
- Will retain the deficiencies of Voxel based CNNs
- Does not address legacy analysis results

✓ Point Cloud



Input: 3D Scene Point cloud

Poly Cube



## Loss and Output

#### Physics laws present constraints -

- Governing differential equations
- Constitutive models

#### **Loss Function**

 Physics based: Conservation of Mass, Momentum & Energy, Strain Energy etc.)

$$f_{obj} = \sum_{i} w_i \left\{ \nabla \cdot \left( u_t^{\star} - \frac{1}{\rho} \nabla \hat{p}_t \right) \right\}_i^2$$



#### Workflow –



# **Discovering Hidden Physics**



#### Hidden Physics Models in CFD:

Infer hidden quantities of interest fields from spatial-temporal visualizations of a passive scaler (e.g., dye or smoke) leveraging the underlying Physics laws (i.e., mass, momentum & energy)

#### Mass conservation:

$$u_x + v_y + w_z = 0.$$

#### Momentum conservation:

$$u_t + uu_x + vu_y + wu_z = -p_x + \operatorname{Re}^{-1}(u_{xx} + u_{yy} + u_{zz})$$
  

$$v_t + uv_x + vv_y + wv_z = -p_y + \operatorname{Re}^{-1}(v_{xx} + v_{yy} + v_{zz})$$
  

$$w_t + uw_x + vw_y + ww_z = -p_z + \operatorname{Re}^{-1}(w_{xx} + w_{yy} + w_{zz})$$

#### Transport:

 $c_t + uc_x + vc_y + wc_z = \text{Pec}^{-1}(c_{xx} + c_{yy} + c_{zz})$ 



# External Flow past a Cylinder - Learnt vs. Ground Truth

CFD Simulation of an **External Flow** over a **Cylinder** with OpenFOAM –

A user error was incidentally discovered by the PINNs that presented itself as a mismatch between the Simulation & AI result !!!

Correct CFD Simulation Results with OpenFOAM (Ground Truth)

**Correct Predictions** 



## Intracranial Cerebral Aneurysm (ICA)



- 0.0e+00



## ICA - Comparison between Simulation & NN



-52



Cut along X-Plane

14

-54 -52 -50

# ICA - Comparison between two CFD Solvers



**OpenFOAM v/s Neural Networks** 





20 25

15





Nektar++ v/s Neural Networks

# **Heat Sink**

#### Heat Sink –

\* Temperatures to not exceed the design criteria

#### Objectives –

- \* Similar accuracy as the Solver
- \* Geometry representation with Point Clouds
- \* Multiple simultaneous parametrized & unparametrized geometries

Physics involved – CFD & Heat Transfer



Ansys IcePack used for Simulation (\*\* we kindly acknowledge Ansys's support \*\*)

### Heat Sink - Conjugate Heat Transfer

$$MSE = \frac{1}{N} \sum_{i=1}^{N} |d(x_i, y_i) - d_i|^2.$$

#### Mean Square Error

$$\begin{split} e_1 &:= uu_x + vu_y + p_x - (\nu + \nu^t)(u_{xx} + u_{yy}) - 2(\nu_x^t s^{xx} + \nu_y^t s^{xy}), \\ e_2 &:= uv_x + vv_y + p_y - (\nu + \nu^t)(v_{xx} + v_{yy}) - 2(\nu_x^t s^{xy} + \nu_y^t s^{yy}), \\ e_3 &:= u_x + v_y, \\ e^f &:= u\theta_x^f + v\theta_y^f - (\kappa^f/c_p^f + \kappa^t/c_p^f)(\theta_{xx}^f + \theta_{yy}^f) - (1/c_p^f)(\kappa_x^t \theta_x^f + \kappa_y^t \theta_y^f), \\ e^s &:= -\alpha^s(\theta_{xx}^s + \theta_{yy}^s). \end{split}$$

#### Loss

Point Clouds used for modeling Geometry

## Heat Sink - Conjugate Heat Transfer



### Conclusion

## **Executive Summary**

#### Neural network for simulation workflows:

✓ Higher Performance: gains on CPU are fast approaching saturation point. Al speeds up the "time-to-insight, design, manufacture and service"

- Broader application areas: Never before imagined scientific simulations usecases are now possible with AI
- ✓ Broader user base: Increased ease-of-use and robustness in the simulation workflow will enable increased number of users with little simulation expertise