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Major Challenges in Reliability of Advanced Packaging

Key Mechanisms Key Drivers
* Low-K Cracking * New Materials
* Solder Joint Fatigue » 2.5D/3D Packaging
* Microvia Separation * Extended Lifetimes



LOW-K CRACKING
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WHAT IS ELK / ILD CRACKING?

* Metal layers (Cu) send power and route signals from the active region (transistors)
* Each metal layer has an inner layer dielectric (ILD) composed of some form of SiO,

* Elevated mechanical/thermo-mechanical stress will crack the ILD
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ELK/ILD CRACKING (cont.)

* Known issue for over 15 years
- Described as ‘white bump’ based on acoustic signature

* Has typically occurred at either flip chip attach or underfill cure
processes

* One of the big drivers for switch to low Tg (underfill)
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Why is ELK Cracking Becoming More Prevalent?

Dielectric Constant, k
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* Copper has a much higher (2X) modulus than solder ("m
- Drives a lot more stress into the ILD Softer solder bump

(E ~ 50,000 MRa, actually temperature dependent)
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Cho, Jae Kyu, et al. "Chip package interaction for advanced nodes: a holistic approach for
foundries and OSATs.“, Chip Scale Review, Dec 2015
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WHY IS ELK CRACKING BECOMING MORE PREVALENT?

* Increasingly, failures are detected/occurring
during thermal cycling Low-k failure in SOP packages after 1500cycles

- Not flip chip attach and not underfill cure Die Crack

* Key issues
- The interplay between applied and residual stresses
- Debate about the presence or absence of cracks
- Possibility of things changing over time
- Poor/insufficient approaches to mitigation

R. Katkar et. al., Reliability of Cu Pillar on Substrate, 2011
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APPLIED VS. RESIDUAL STRESS

* Difference in coefficient of thermal expansion (CTE) between die and
substrate causes a moment on the copper pillar

- Drivers compressive and tensile normal stresses in ELK layer

Compressive Stress Tensile Stress

* Therefore, the corner I/0O is typically
the bump of concern
Die
Diagonal
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APPLIED VS. RESIDUAL STRESS (cont.)

* The interplay between applied stresses and residual stresses are not
necessarily well understood

* Higher temperatures during thermal cycling increase applied stresses, but
lowers residual stresses

e Real risk that standard JEDEC thermal cycling can not be extrapolated to field
conditions
- -40°Cto 10°C > -40°Cto 125°C?
- Where have we seen this before?
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CRACKS OR NO CRACKS?

* Modeling and mitigation approaches change if ELK cracking is driven by the
presence of an initial crack (i.e., during die singulation)

* The presence of an initial crack may explain time-dependency of ELK cracking
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Evaluation in low-k BEol." ICF12, Ottawa 2009. 2013. Energy Release Rate (ERR)
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ELK CRACKING OVER TIME

* Failure after several hundred cycles does not correlate with typical brittle
fracture
- Brittle fracture is typically deterministic (binary)
- It either fails or it doesn’t

* Theory 1: A material property is changing over time
- Work hardening of solder? Degradation increases compliance
- Work hardening of copper? Requires high stresses (100 to 200 MPa)
- Work hardening of polyimide? Not reported in the literature
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ELK CRACKING OVER TIME (cont.)
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Ritchie, R. 0., C. J. Gilbert, and J. M. McNaney. "Mechanics and
mechanisms of fatigue damage and crack growth in advanced materials."
International Journal of Solids and Structures 37.1 (2000): 311-329.
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POOR/INSUFFICIENT APPROACHES TO MITIGATION

* Mitigation is dominated by design rules
- Limited to no correlation to actual stress states within the ILD

* Examples of design rules
- Large pad diameter
- Rigid requirements regarding metal density
- Coarser spacings
- Copper pillar dimensions

* Different design rules from different suppliers (foundry vs. OSAT)
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TRANSITIONS ARE KEY

 Strong indication that design guidelines on metal density are insufficient

Cohesive Crack Propagation
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TRANSITIONS ARE KEY (cont.)
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 Transition between different dielectric
materials
- ULK/ELK to LK, ULK/ELK to USG, etc.

Normalized energy release rate, Z

nd reliability impact on Cu/Low-k Interconnects
ctions for 3D Integrated Systems (2008).
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 Large variation in areas of metal and Eastc mismateh, @
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Zhang, Xuefeng, et al. "Chip-package interaction a
Electrical, Optical and Thermal Interconne

* Large variation in concentration
of vias under or adjacent to the bond pad



SOLDER FATIGUE
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SOLDER JOINTS FATIGUE UNDER THERMAL CYCLING

Solder is connecting two objects that
expand/contract at different rates

Component material
(leadframe)

>
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SOLDER JOINT FATIGUE

* Knowing the critical drivers for solder joint fatigue, we can develop predictive
models and design rules

Volume of Solder
Thickness of Solder
Solder Fatigue Properties

Elastic Modulus (Compliance) of Component
\ Length of Component

CTE of Board

CTE of Component

Elastic Modulus (Compliance) of Board
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1D STRAIN ENERGY
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Closed Form, PCB Stiffness, Strain Energy, E (T), Tg, Die Shadow

N. Blattau and C. Hillman, “An Engelmaier Model for Leadless
Ceramic Chip Devices with Pb-Free Solder,” Journal of the
Reliability Information Analysis Center, First Quarter 2007, 6-11
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3D STRAIN ENERGY
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da
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Darveaux, R., “Solder Joint Fatigue Life Model,” Proceedings of TMS Annual Meeting, Orlando
FL, February 1997, pp. 213-218
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GLOBAL + LOCAL MODELING




Increasing number of companies
reporting early life failures during
thermal cycle testing or in the field

Classic solder fatigue
approaches do not seem to be
capturing these risks




__J
ROOT-CAUSE OF UNEXPECTED FAILURES

Strong indication that mixed-mode stresses are key drivers

CLASSIC BEHAVIOR

> Idealized CTE mismatch Shear strain  y = CLyATAa
h
High Temperature
T=20"C > T=120°C
—
—
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ROOT-CAUSE OF UNEXPECTED FAILURES

Strong indication that mixed-mode stresses are key drivers

MIXED-MODE (TRIAXIALITY) BEHAVIOR




| R ————————— ————.———————————
ROOT-CAUSE OF MIXED-MODE STRESSES

* Driven by increasing complexity and density of electronics, including
adoption of mechatronics

* Three categories
- Over-Constrained Boards / Housing Interaction (previously covered)
- Potting/Coating/Underfill
- Mirroring

* Also described as ‘system-level’ effects

ANSYS
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OVER-CONSTRAINED BOARDS

; Bolts Torque: 15-20 in-lbs
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COATING/POTTING/UNDERFILL
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BGA/CSP MIRRORING

Mold compound

BGA->44 B B B

800 um

e Avoided in earlier designs (challenges with
rework and X-ray inspection)

- Increasingly required due to higher densities and higher

Based on Darveaux Model

Reliabiliry (cvcles)
speed memory Assembly ,
Measured Predicted
) ) Single-Sided BGA 2153
. 8.284 .12
e Reduces lifetime by 1.5X to 5X, but numerous (0 mil pad) -
Single-Sided BGA 7807 7001
izati T le t dict behavi (2 ol pad) : "
organizations struggle to predict behavior _@mn
ingle-Sided BGA 7.736 7814
(24 mil pad) ’ ’
Mirror Image BGA 1.576 2,800
Based on Darveaux Model Single Sided CSP Teil 5130
Pitch ] SnPb SAC305 Mirror Image CSP 3.174 2300 %
mm type Test /FEA Error Test /FEA Error ) - .
- Meifunas, M., et al. "Measurement and prediction of reliability for
Single 1487/1839 23% 2131/2111 -0.9% double-sided area array assemblies." Electronic Components and
127 Mirror 650/334 48% 748/548 27% Technology Conference, 2003. Proceedings. 53rd. IEEE, 2003.
Offset 716/543 -24% 851/787 -7.5%

Ye, Yuming, et al. "Assessment on reliability of BGA package double-sided assembled." High Density
Packaging and Microsystem Integration, 2007. HDP'07. International Symposium on. IEEE, 2007.
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SYSTEM-LEVEL SOLDER FATIGUE PREDICTION

e Sherlock (Thermo-mech) H‘:’g;“nf:jﬁ;i:;ttfss Deviatoric stress
components

* Creep equivalent approach (Secant Modulus)
- No time-stepping

* Energy partitioning method of shear Ne = C (AW )shear 4 Co(AW) pxiar 2
and axial components

- Energy calculated using closed-form equation




SIMULATION AND RELIABILITY OF
ADVANCED PACKAGING
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LOW-K CRACKING AND SOLDER FATIGUE MITIGATION

* Increasingly, failures are occurring ‘randomly’ throughout the advanced
package

- No longer only occurring at the corners (15t level or 2"9 level interconnect)

* Even for packages that are ‘similar’ and follow all design rules

* Driven by increasingly package complexity (different materials, different stress
states)
- Low K cracking: metal layout, bump layout and bump collapse
- Solder fatigue: array pattern, system effects, microvia stacks
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MODELING CHALLENGES — SOLDER FATIGUE/MICROVIA STACKS

 Where and what of microvia stacks
increasingly driving solder fatigue and low-k
cracking behavior

* How to perform global/local without
knowledge of what to model and where to
model?
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NEXT STAGE IN MODELING/SIMULATION OF ADVANCED PACKAGING

* ANSYS is extending scripting, modeling and element options to expand the
ability to model all artifacts that could influence key failure modes

- Interconnect geometries + die, interposer, substrate
and PCB layout

5555555555

* Combined with expansion of electronic material
properties S -




