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Advent of Adversary among IC Chips

H/W Trojans 

Crypto attacks
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Physical Attacks in Dimensions

Safety zone 
at IC chip

5mm*
*Magnified

Leakage observed on PCB
〜100mm

Leakage through far 
EM emanation

1m〜

Objective: Securing crypto-engines in the areas of ICs
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Physical Attack Isolation Walls at Chip Level
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Passive Attack -- Power Noise Analysis
Analysis models (Attacker)
- Simple power analysis (SPA)
- Differential power analysis (DPA)
- Correlation power analysis (CPA)
- Local EM analysis (LEMA)

EM probe
(Attacker)

IC chip with 
crypto engine

Package and PCB

EM emanation
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Active Attack -- Laser Fault Injection

Plaintext
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Ciphertext

Correct
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Differential
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LFIKey

Candidate
Key

Candidate
2128 Key Space 28 Key Space

Secret Key
Exposure

FF

Laser Fault Injection
(LFI)

High resolution fault injection both in time and space, 1-bit fault 
potentially leads to leakage of 121-bit key (@AES-128)
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Attack Measures and Packaging Structures

IC chip
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Assembly structure

Physical media
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Crypto Core

Micro EM probe
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LEMA Attack Sensor
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Dual Sensor
Coils

EM observation impossible w/o disturbance to fields -- “invasive 
attack” is not true
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LEMA Sensor Circuit Details
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LEMA Sensor Features

No frequency reference needed
 Robust and yet low-cost countermeasure
 Different coil shapes further enhance robustness
 Dual EM-probe attack almost impossible

Fully-digital oscillator-based sensor circuit
 Detection: 2 Racing Digital Counters (2RDC)
 Calibration: Ring Oscillator (RO) + 2RDC

N. Homma et al., “Design Methodology and Validity Verification for a Reactive Countermeasure Against EM Attacks," 
IACR Journal of Cryptology, Dec. 2015.
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Design Example

Crypto Core (e.g. AES)
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Detection Range Measurements
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Demonstration of EM Probe Detection

1/4 Divided Clock Frequency Spectrum

Frequency [MHz]440 500Frequency [MHz]440 500

3-Turn Coil L2
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5.2% Shift
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LFI Attack Sensor

p+ n+n+

P-Substrate

G D

Electron-Hole
Pairs

Hole
Capture

*E. Neto et al., “Using Bulk Built-in Current Sensors to Detect Soft Errors,“ IEEE Micro, 2006.
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Distributed Bulk-Current Sensor

Crypto Core w/ Distributed Sensor
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LFI Detection Measurements

*K. Matsuda et al., “A 286 F2/Cell Distributed Bulk-Current Sensor and Secure Flush Code Eraser Against 
Laser Fault Injection Attack on Cryptographic Processor,“ IEEE J. Solid-State Circuits, 2019.
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LFI Detection  Sensor Demonstration
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Side-Channel Analysis

► Analysis (or attacks in a malicious case) to extract a secret key from 
power-noise waveforms

► Simulation technique to evaluate security risks in design against 
diversified leakage models

Correlation Power Analysis (CPA)
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before and after the crypto computation
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CLK
Crypto computation on scalar multiplication algorithm 
(e.g. point doubling, point addition)
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Power noise during encryption

0010203_0405067....
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CPS* Model for Diagnosis and Analysis
*Chip-Package-System board

Full-system level simulation of power-noise SC leakage

RLGC

LWire RDie_effective

CDecap CDie_effective

ZDD

Package
model

PCB
model

Chip model

VDD

VSS

Power
converter

Digital 
circuit of 
interest
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Challenges
► Challenge1: Chip Package System(CPS) board-level power-noise 

SC leakage modeling and simulation

“CPA” with one CLK cycle wave for thousands of plain text

power noise
CLK

2000~

power noise
CLK

“SPA” with thousands of CLK cycles of public-key encrypt

1

 Public-key cryptography –
Simple Power Analysis (“SPA”), a single power-
noise waveform over thousands of  CLK cycles, 
very long time power noise simulation is required.

 Private-key cryptography –
Correlation Power Analysis (“CPA”), power-noise 
waveforms for thousands of different plain texts, 
very large set of power noise simulation is required. 

► Challenge2: Analysis (attacks) by simulation to derive a secret key 
from IC chip level power noise waveforms

 Side-channel leakage is assessed on countermeasure crypto ICs in a design phase.
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► Noise paths and noise sources
(1) Full chip PDN modeling
 include silicon substrate
 w/o dynamic power simulation

► Power-noise SC leakage simulation 

Case1: Private-key (e.g. AES) – power-noise 
waveforms for thousands of plain texts (#1~#10000)
(different test vectors for short CLK cycles)

Chip Power Model of Crypto Engines

(2) Core level power modeling 
 w/o full chip Si sub. and PDN 

extraction

Case2: Public-key (e.g. RSA, DSA, ECDSA) -- a single 
power-noise waveform of several thousand CLK cycles
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Silicon Experiments

► 128bit AES crypto IC chip
 3 mm x 4 mm
 130 nm CMOS process
 Private key cryptographic (AES)
 Single power domain (1.5V)

► Evaluation board and system
 7.3 cm x 10.0 cm
 4 layers of interconnect
 Chip on Board (CoB) assembly
 Daughter board to micro controller

Au wire

CoB assembly

AES Core
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Power-Noise SC Leakage Simulation Results
►Case study: private-key cryptographic IC chip
 AES encryption engine
 Operation frequency: 34 MHz

Test Chip Layout

voltage probing
node(METAL6)

VDD

VSS

for a single
waveform

Last round of encryption Simulated Power Noise Waveform

1.0 3.0 5.0 7.0 9.0 11.0 (ns)

1.500
1.498
1.496
1.494
1.492
1.490

1.502
(V)

V for Hamming
distance

1500 data set is captured

#of cells # of wires # of vias
Full IC chip 231036 13674 41265

Memory Threads CPU time
PDN modeling 2726MB 8 3.0 hour
power noise modeling 2348MB 8 8.5 min
power noise simulation 229MB 1 2.8 sec

►Power noise on VDD during crypto operation of 
last round (12 ns) in C-P-S simulation
# of plain texts: 1500

►Simulation cost evaluation
 server: Intel Xeon CPU ES-2699 v4 (2.2GHz)

Active gate count=34K



Copyright Makoto Nagata, Kobe University -27-

Acceleration of Simulation

► Traditional full-chip level simulation takes longer computation time due to 
impedance extracted from physical layout of an IC chip in long sim. time.

► Proposed flow iteratively updates the active part of CPM while keeping 
passive networks (e.g. PDN) and focuses on dynamic power noise data.

Passive part of CPM

Active part of CPM

Full chip CPM modeling

AES core CPM modeling

Cost of CPM Extraction

Required resource and time

CP
U 

tim
e (

ho
ur

)

Advanced
flow(proposed)

Traditional
flow

x21.2 faster

Cost of Simulation
CPU : 2.2GHz (2core), 
Memory usage : 2.3GB



Copyright Makoto Nagata, Kobe University -28-

Summary

Exploration of on-chip protection circuits against a variety
of physical attacks in passive and active manner.
Chip-package system board simulation technique toward
the design of crypto circuits for resiliency, and also to
design of attack sensors.
Research spaces of on-chip protection against H/W Trojans.
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