AI CHIPS EVERYWHERE, WHERE IS AI IN DESIGN

Srinivas Bodapati Intel Corporation

AI/ML REVOLUTION

DESIGN PRODUCTIVITY GAP

ITRS 2011, Design

RECENT CONFIRMATION

- <u>https://semiwiki.com/eda/cadence/7622-an-update-on-the-design-productivity-gap/</u>
- DAC 2018 Panel Discussion Quote
 - "Monster Chips Scaling Digital Design Into The Decade

'Design implementation capacity must be improved. The Quality of Results (QoR) for blocks greater than 2 million instances tends to degrade substantially."

'Agreed. We are constrained to block sizes of 1M-3M instances to achieve suitable turnaround time and QoR. The design partitioning overhead in floorplanning and constraint management is cumbersome. We need to be able to support **block sizes of 20M-30M instances** to keep pace with the technology."

https://semiengineering.com/can-ai-alter-the-burgeoning-design-cost-trend/

DESIGN/PROGRAM MANAGEMENT

DESIGN/PROGRAM MANAGEMENT EXAMPLES

SOC DESIGN FLOW*

*Guillaume Delbergue. Contribution à l'amélioration des plateformes virtuelles SystemC/TLM : confguration, communication et parallélisme. Electronique. Université de Bordeaux, 2017. Français. <NNT : 2017BORD0916>. <tel-01778172>

Software

ARCHIECTURE/PLATFORM: AI EXAMPLES chitecture/Platform Accurate Component Models for Performance Modeling

Power Modeling/ISA Sequence Power Model

Cost Modeling

FUNCTIONAL VERIFICATION: AI EXAMPLES

Functional Verification

Test Generation To Improve Coverage Through RL⁺ +Reinforcement Learning/

Debug/Root Cause Error (Similarity)

Security Verification (GAN)

Behavioral Modeling/New Representation (CAEML)*

*https://publish.illinois.edu/advancedelectronics/

CORNUCOPIA OF AI APPLICATIONS IN DESIGN Design Models Early optimiz APR for faster ation for APR Config / simulatio iteration kit Settings ns ates exit Predictiv ustom Parasitic e models Physical Circuit Modeling for Design Design op+i-Pre-Circuit layout/ Context Postrobustne sensitive URC Deep learning layout SS simulati analysis models fixes ons Prof. A. Khang : Machine Learning Applications in Physical Design: Recent Results and Directions

AI/ML HURDLES IN EDA

F. A.

DATA STRATGEV

FUNDING/TALENT

X QU

Secondary Issues

- Al/ML interpretability problem (XAI)⁺/ transparency
- Unknown errors
 - Difficult to detect errors across the state space
- Bias in the models
- Problem definition

DATA TYPE FOR AI/ML

With-in design data

- Training based on in-context data
 - Surrogate models for circuits
 - Debug/root cause analysis
 - Power/Performance models for various components

Across design data

- Training based on data across designs
 - Early exit in APR
 - Predictive models for optimization across APR stages
 - Milestone predictions
 - Parasitic estimation

DATA STRATGEY

No Data AI/ML

Inaction

Lack of data strategy

- Don't know what data to store / needed
- Data quality
- Lack of easy data storage APIs in tools
 - No standards
- Do not have abstract representation of data
 - E.g Word2Vec/embeddings for NLP
- Data augmentation strategy
 - Different for different applications

AI/ML EFFORTS ROI

- Lack of clear value proposition
 - Good models difficult with limited POC hence no investment
- Challenge to solve difficult problems
- Mostly reliant on EDA vendors for ML
 - Lack of transparency on model accuracy

AI/ML TALENT/FUNDING IN EDA

Lack of research/talent coming into EDA

- CAEML good start
- Still hampered by data
- Challenge to acquire talent from research to development

CONCLUSION

- Vendor tools enabling AI/ML solutions primarily within an execution/design cycle
- Across design learning is difficult
 - Design teams need to own it or may be some collaboration across academia/industry
 - > Figure out what, why and how to centrally archive data
 - Waiting for problem definition is too late
- Vendors need to enable easier/standard data access capabilities
 - Parsing log files is not easy and time consuming
 - Enables design organizations to pursue ML along with vendors
- EDA in cloud may enable larger breakthroughs if data sharing strategy is resolved