Design For Thermal Reliability in 7nm

Jae-Gyung Ahn Oct 3rd 2019

Contents

> Introduction

- > Budget-Based Reliability Management
- > Self-Heating Effect
- > Thermal-Aware EM
- > Temperature Gradient
- > Summary and Conclusion

Introduction

- > Reliability of SoC Product: Weakest Link or Series System Model
 - >> Mix of Digital, Analog, & Memory
 - >> Multiple Mechanisms(TDDB, EM, BTI, HCI, etc.) & Components (FEOL, BEOL, & PKG)
- > High Power in Data Center & High Temp in Automotive
- > Thermal Issues: Local Heating & Temperature Gradient

Product Reliability

- > Lifetime is defined as the time @CFR (Cumulative Failure Rate) = F_0
 - >> F₀ = 0.1% ~ 1ppm
 - >> CFR vs. time relation is required to get lifetime
- > Weakest link \rightarrow $F_{chip} = 1 S_{chip} = 1 \Pi S_i = 1 \Pi (1-F_i) \sim \Sigma F_i$ if $F_i << 1$
 - >> Each fail event is independent
 - >> Failure of any device or metal is considered as failure of chip
 - » Pessimistic approach with redundant elements
- > Target failure rate of each block is assigned: "Reliability Budget"
 - >> Make sure failure rate of whole product meets the spec
 - >> Gives flexibility to Design since budget is transferrable

Budget-Based Reliability Management

- > Budget-Based vs. Rule-Based Reliability Check
- > Rule violation (Vmax, Imax, ΔTmax) can be allowed as long as total FR is less than target

	Budget Based	Rule Based	
Goals	Total A _{TDDB,eff} <= Area_max?	Vg <= Vmax?	
	Total EM FR <= EM FR Budget?	lavg <= Imax?	
	Meet Performance and	ΔBTI+HCI <= Criteria?	
	Functionality @EOL		
ΔT Criteria	Can be relaxed	5°C ~ 10°C	
Benefit	Guarantee Product Reliability		
	Quantify Product Failure Rate		

Local Heating Effects

Self-Heating Effect (SHE) in FinFET → T_{channel} higher than T_{junc} ΔT_{channel} ~ R_{TH} x Power_{channel}

> Joule-Heating Effect (JHE) from high current and resistance: → RMS rule for EM ΔT_{metal} ~ i²R

Impact of Thermal on Reliability

- > Reliability lifetimes are strong functions of temperature
- > LT ~ 0.7x with $\Delta T = 5^{\circ}C$ or LT ~ 0.5x with $\Delta T = 10^{\circ}C$
- > Rule of maximum ΔT is hard to meet in advanced technology
- > Impact to the product reliability (Impact to Reliability Budget) ?

Aging Simulation with SHE

- > ΔT_{ch} from SHE enhances Δ of Aging Effect (BTI & HCI)
- > Δ (Device degradation) should degrade performance @EOL
- > Pass criteria is not amount of Δ , but perf@EOL

Impact of SHE to TDDB

> TDDB impact by checking A_{TDDB,eff} (Effective TDDB Area)

Impact of SHE to TDDB is quantified by Aging simulation flow

Impact of SHE to TDDB

> Highest ΔT_{ch} may not be coincident with highest V_{eff}

- >> Case 1: No impact to $A_{TDDB,eff}$ even with $\Delta T_{ch} = 29^{\circ}C$
- >> Case 2: $A_{TDDB,eff}$ doubled due to $\Delta T_{ch} = 9.3^{\circ}C$
 - Acceptable if A_{TDDB,eff} is within the *budget*

Distribution of A_{TDDB,eff} [arb. unit]

Case 1

EXILINX

Thermal-Aware EM Flow

- > Estimate impact of local heating on EM of wires and vias
- > FinFET Self-Heating Effect (SHE) & Wire Joule-Heating Effect (JHE)
- > Superposition of Thermal Coupling from all the neighboring wire aggressors

$$\Delta T_i = \sum c_{ij} \Delta T_j$$

- > Coupling coeff. is a function of distance
- > Both in horizontal and vertical direction

[4] Stephen H. and Norman C. ECTC 2015 (ANSYS)

Thermal-Aware EM Flow

- > Superposition may result in very high ΔT when there are many aggressors
- > Applied Clamping value for ΔT
 - >> Use the Maximum possible ΔT value (based on rms_ratio values)
 - >> Within influence range
- > Resulted ΔT value for two example cases
 - Soluted heat source has lower ∆T than dense → Additional benefit to Design

rms_ratio = 100% for center line only

Flow for EM with Thermal

> $\Delta T_{metal or via} = \Delta T_SHE + \Delta T_JHE$

> Imax reduced by $\Delta T_{metal or via}$ \rightarrow em_ratio increased \rightarrow EM Failure Rate increased

> **ΔT** assumed to be Additive

Example	
$em_ratio = 80\%$	
Iavg = 0.8mA	
$Imax(T_{junc}) = 1mA$	
$\Delta \text{Temp} = 13C$	
ΔTemp SHE = 8C	
ΔTemp JHE = 5C	
$Imax(T_{junc} + \Delta Temp) = 0.39mA$	
em_ratio w/ Thermal = 205%	

Case1 of JHE to EM

> ΔT_{metal} = 26.9°C / Total EM FR increased by ~0.02% → No risk

- >> Highest ΔT_{metal} occurs at metals of low em_ratio
- >> Modified em_ratio is still at lower level

EM FR Distribution w/ and w/o JHE

E XILINX.

Case2 of JHE to EM

> ΔT_{metal} = 13.0°C / Total EM FR increased to 67x
 >> Fail to meet EM FR budget → Design Change Required

EXILINX.

Design Flow for Product CFR (Cumulative Failure Rate)

> Transient simulation

- \rightarrow V_{eff} and I_{eff}
- >> Self-Heating Effect + Joule-Heating Effect
- >> A_{eff} and N_{eff} --- Proportional to CFR
- > A_{eff} and N_{eff} vs. REL Budget
- > Use Cond: Vcc & Temp profile
 - $\rightarrow \Delta T_{block} \rightarrow Lifetime modulated$
 - >> CFR_{TDDB} and CFR_{EM} vs. time
 - >> CFR(Product) vs. time
 → Gives Lifetime of the Product

S XILINX.

Temperature Gradient within Chip

- > Thermal Simulation with Power Density to get Temperature Profile
- > Higher T_{junc} in high power circuit block
- > Simplified ΔT_{iunc} to estimate CFR vs. time and get product Lifetime

 $F_{Chip} = \sum F_{TDDB,i}(\Delta T_{junc,i}) + \sum F_{EM,i}(\Delta T_{junc,i})$

> High EM CFR w/ high $\Delta T_{iunc} \rightarrow$ Threat to the product lifetime

Budget-based check enables us to increase FR of the block with high ΔT_{junc} only.

Temperature Gradient within Chip

- > $\Delta T_{junc} = 8^{\circ}C$ obtained for a high power block
- > Budget-based check and special care for high ∆T_{junc} block → Final LT becomes 12.0yr

Product CFR vs. use time [year]

E XILINX.

> Design For Reliability in 7nm node explained

> CAD Flow enhanced to consider thermal issues

- >> FinFET Self-Heating Effect impact to BTI / HCI / TDDB / EM
- >> Metal Joule Heating Effect impact to EM
- >> Temperature Gradient impact to Product Failure Rate

> Budget-Based Reliability Flow gives flexibility to handle thermal issues.

Adaptable. Intelligent.

