Polymorphic Gates and Their Applications in Hardware Security

Gang Qu University of Maryland, College Park <u>gangqu@umd.edu</u>

Electronic Design Process Symposium Milpitas, California, USA September 14, 2018

Outline

- #Polymorphic electronics: a brief history
- #Finding polymorphic gates
 - Design approach
 - Findings
- *Polymorphic gates for security
 - Circuit watermarking and fingerprinting
 - Authentication and random number
 - generation
- # More readings

eshSec Lab

Polymorphic Electronics

- # Evolvable Hardware
 - Reconfigurable to the environment
 - Applicable to extreme conditions, e.g. space or deep sea.
- # Polymorphic electronics/circuits
 - First proposed by A. Stoica, 2001
 - Function changes in response to the environment
 - Polymorphic gate: logic gate that integrates multiple functions
 - FPTA, CMOS, emerging devices

Dr. Gang Qu (gangqu@umd.edu)

Sec 1 at

Polymorphic Electronics

Function	Control	Control values	Transistors
AND/OR[A.stoica,2001]	temperature	27/125C	6
AND/OR[A.stoica,2001]	ext. voltage	3.3V/OV	- 6
AND/OR[A.stoica,2008]	Vaid	3.3V/1.2V	8
AND/OR/XOR[A.stoica,2001]	ext. voltage	3.3V/0V/1.5V	10
NAND/NOR[A.stoica,2004]	V _{dd}	3.3V/1.8V	6
NAND/NOR[L. Sekanina,2008]	V _{dd}	5V/3.3V	8
NAND/XOR[R. Ruzicka,2008]	ext. voltage	3.30700	9

Polymorphic Electronics

- Flexibility
 Adaptive systems
 Reliability
 Self-checking circuits
 Low overhead
 Multi-function circuits
 - Finding polymorphic gates is HARD.

Finding Polymorphic Gates

#Genetic algorithm

Netlist creation (Terminal indexes and transistor parameters)

> Fitness calculation (Fitness = #(f'== f))

Next generation reproduction (changing the topology and/or parameters)

Stop?

Report results

Candidate selection (Fitness>Threshold)

Our Experiments

- Software: evolutionary algorithm based approach to find polymorphic gates by a C netlist modifier and Hspice as the simulator.
- # Experiment setup
 - Target technology: 0.13um SMIC library.
 - Transistors: 4 P-type transistors and 2 Ntype transistors.
 - Supply voltage V_{dd} = 1.2V.
 - Temperature: 8 discrete values from -25°C to 150°C.

Sec 1 at

Findings (I)

Polymorphic gates controlled by temperature

Findings (II)

Partial polymorphic gates

Findings (III)

Random output gates

eshSec Lab

V(out) with process variation and unstable supply voltage

Findings (IV)

Two-input; SMIC 0.13um; Vdd = 1.2V # External input triggered.

	ALC MARKED
Gate functionalities	#Transistor
NOR(C=1) - INV (C=0)	6
NAND(C=1) - INV (C=0)	7
AND(C=1) - BUF (C=0)	9
AND(C=1) - OR (C=0)	11
NAND(C=1) - NOR (C=0)	9

Differentiating Input Values

Input combinations that will make polymorphic gates produce different outputs at different modes.

Example: (0,1) or (1,0).

Circuit Watermarking

nSec I at

What is circuit watermarking?
Why we need to watermark design?
Polymorphic gates based watermarking.

Circuit Fingerprinting

What is circuit fingerprinting?
Why we need to fingerprint design?
Polymorphic gates based fingerprinting.
atisfiability don't care (SDC) conditions.

Evaluation Results

#Evaluation setup

- SMIC 0.13um technology
- Integration of polymorphic gates in synthesis library
 ISCAS 85/MCNC benchmark
- Synopsys Design Compiler

		- 10 F - F - F - F - F - F - F - F - F - F		The fail of the second se
1	Circuit	#Gates	#SDC-based fingerprint	#Dummy fingerprint
32	C880	290	42	114
	C1355	424	69	64
1. 1	<i>C</i> 1908	396	52	106
11. 14	C3540	943	116	124
0.0	<i>C</i> 5315	1428	47	548
	dalu	1228	52	398
1.1	des	3483	70	1712
- e-	ex5	609	155	64
1.5	i8	1174	208	267
	i10	1914	134	509
1	1 1 1 4 4 2 C	1. 1. 1. 1. 1.	and the second	person in person

MeshSec Lab

Evaluation Results

#Overhead

Circuit	16-bit real + 16-bit dummy			32-bit real + 32-bit dummy		
on carr	△Delay(%)	△Area(%)	\triangle Power(%)	△Delay(%)	△Area(%)	\triangle Power(%)
<i>C</i> 880	1.08	8.11	8.16	1.08	16.31	11.90
C1355	5.72	5.9	7.23	11.74	12.275	8.02
C1908	5.1	6.31	4.13	7.05	13.17	5.09
C3540	0.55	3	2.78	1.11	5.835	4.72
C5315	0	1.645	1.93	6.8	3.355	2.05
dalu	2.38	2.56	2.26	5.71	4.77	2.49
des	4.59	0.77	0.50	4.59	1.455	0.55
ex5	0	3.54	13.05	1.65	6.485	13.26
i8	0	1.845	1.79	0	3.635	2.29
i10	0.74	1.205	0.77	0.74	2.4	0.98
Avg	2,02	3,485	4.26	4.04	6.97	5.14
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.7.1.1.1.1	1911 - A.S.	A 1. 2 - 1 - 1	12.14.18	11. N. Y. P.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

Logic Obfuscation

- * A promising countermeasure for reverse engineering (RE).
- **#IC** reverse engineering
 - Depackaging the IC using corrosive chemicals.
 Imaging the top-view of each layer using an optical micro-scope or single electron microscope (SEM).
 Extraction of gate-level netlist from the images
 Reproduce identical copies of IC
 Facilitate hardware Trojan insertion
 - Circuit redesign or integration

Logic Obfuscation

#Obfuscation: using configurable logic cells

- can be configured as different logic gates
- cannot be observed under optical or electron microscopy
 - The only way to know the logic is to traverse all the possible inputs and read the corresponding output.
- #Polymorphic gates:
 - Non-standard topology is obfuscation by default.
 - Polymorhpic and partial polymorphic gates.

Sec 1 at

Randomness

#Random number generator #Unique ID for circuit identification

Input(a,b)	Output
0,0	1
0,1	u
1,0	0
1,1	0

Truth table (Temperature = 25°C)

V(out) with process variation and unstable supply voltage

Conclusion and Future Work

- Genetic algorithm to find polymorphic gates
- *New types of polymorphic gates
- * Polymorhipic gates for hardware security applications: IP protection, xRNG, etc.
- # Future work
 - Fabrication of polymorphic gates and polymorphic circuits
 - Explore more security applications

"Polymorphic Gate based IC Watermarking Techniques", 23rd Asia and South Pacific Design Automation Conference (ASPDAC'18), pp. 90-96, January, 2018.

- "A novel polymorphic gate based circuit fingerprinting technique", 28th IEEE/ACM Great Lakes Symposium on VLSI (GLSVLSI'18), May 2018.
- "20 Years of Research on Intellectual Property Protection", IEEE International Symposium on Circuits and Systems (ISCAS'17), May 2017.
- 4. **"Polymorphic electronics**,"International Conference on Evolvable Systems. Springer Berlin Heidelberg, pp. 291-302, 2001.
- "Taking evolutionary circuit design from experimentation to implementation: Some useful techniques and a silicon demonstration," IEE Proceedings-Computers and Digital Techniques, vol.151, no.4, pp.295-300,2004.
- "Evolution of multifunctional combinational modules controlled by the power supply voltage," 1st NASA/ESA Conference on Adaptive Hardware and Systems, pp. 86–193, 2006.

Thank You!

This work is sponsored in part by NSF under grant CNS1745466 and by a research agreement between the University of Maryland and the Laboratory for Physical Sciences.

> Tian Wang, Prof. Xiaoxin Cui Peking University Omid Aramoon, Timothy Dunlap[:] Universty of Maryland Dr. Bill Johnson Laboratory for Physical Sciences