Design System for Machine Learning Accelerator

Joonyoung Kim
NVXL Technology
Senior Director of Machine Learning HW Development

09/13/2018

NV XL

never stop accelerating.

NVXL ACCELERATION PLATFORM

Convolution . H.265 Intel PairHMM
Compression Im2Col

NVXL & 3P

RTL/OCL 0 MatrixMult Intel DLA
Ker/ne|s Pooling Encryption Softmax

NVXL/Partner
Libraries

Deep Learning, Big Data, Ops Applications

Caffe2 Framework Other Frameworks & APIs
Data Flow Compiler
Deep Learning Templates OpenCL & RTL Kernels

Model-Data Parallel Data Flow Optimizer

Deep learning Templates OpenCL & RTL Kernels

NVXL
Acceleratio

Platform

NVXL Acceleration er

JData Pipeline \'Q Runtime System

. Resource Provisioning Layer

Direct Connect Fabric (96 GB/sec)

OpenCL Overview

Industry Standards for Programming
Heterogeneous Platforms

GPUs

Increasingly general

CPUs Emerging

Multiple cores driving : data- llel
performance increases Intersection purpo:smsziiﬁgra ©
SOEE
s a
Multi OpenCL Graphics
proé'es‘;or Heterogeneous APIs and
, i Shading
e.g. OpenMP

OpenCL - Open Computing Language

Open, royalty-free standard for portable, parallel programming of
heterogeneous parallel computing CPUs, GPUs, and other processors

Source: Khronos Initiative for Training and Education

OpenCL Overview

OpenCL Platform Model

ol
/

e ™
i
T

Compute Unit OpenCL Device

I

« One Host and one or more OpenCL Devices

— Each OpenCL Device is composed of one or more
Compute Units

« Each Compute Unit is divided into one or more Processing Elements
 Memory divided into host memory and device memory

Source: Khronos Initiative for Training and Education

Faster time-to-market (OpenCL vs RTL)

Quick design exploration

W hy Easy design re-use

OpenCL and
FPGA

Faster design completion

Increased performance by offloading performance-
intensive functions from the host processor to the FPGA

Significantly lower power than a GPU or multicore CPU by
using OpenCL, which generates only the logic needed

FPGA
Accelerator

Design
Process

Plan and
develop

Modify and
release

Plan and
develop

Analyze

Plan and develop BSP (Board Support Package)

Modify and release device drivers

Plan and develop kernels for FPGA acceleration

Integrate into overall system and run performance test

Analyze performance bottleneck and fix

Machine Learning Accelerator on FPGA

* Design consideration
* High throughput for popular CNNs
* Low latency

DRAM bandwidth

DSP and BRAM utilization

* Number of MACs

 Amount of parameters

* Accuracy

Top-1 accuracy [%)

What we want

Inception-v4
80 4
”,
Inceptnon-yB A ResNet-152 552 MB
. |Resnet-s0 (5 VGG-16 | VGG-19 |
51 . ResNet-101 | :
. ResNet-34 i i
L. l ;
70 + a ResNet-18 l :
|
, GooglLeNet [:
ENet . :
65
© Bn-NIN
60 4 5M 35M 65M 95M 125M 155M
------ 1
pN-AlexNet
55 1 ! AlexNet
|
[240 MB
50 v v v v v v . .
0 : 10 15 20 25 30 35 40

Operations [G-Ops])

Data Parallelism

 Same model mapped to multiple FPGAs

* Data is split by orchestration SW into different mini batches and
processed in parallel

* Overall performance scales linearly with number of modules

ALY

P2 A

w

P3 $¢

Source: https://arxiv.org/pdf/1802.09941.pdf

Model Parallelism

» Take a complex stage (layer) and split into multiple modules

e E.g. 128x128 matrix is split into sixteen 32x32 matrices and processed in
parallel

* Initially done to balance out overall run time

* Requires explicit synchronization

P2
P3 P3

Source: https://arxiv.org/pdf/1802.09941.pdf

Pipeline Parallelism (Layer Pipelining)

* Multiple FPGAs are used to implement certain network that is too

Host CPU

large to fit in one FPGA

Start with a vendor reference design
|dentify feature set

BSP Implement required features and verify
Development

Board test

Deployment

|dentify vertical areas

Computation modeling in C/C++
(often open source code)

Profiling and identify offloading opportunity
Kernel

Development Design in OpenCL

Performance tuning

Deployment

Matrix Factorization

s

Ratings (R) [X d H I f

Users

n

m users

n items

Figure 1. Matrix factorization factors a sparse ratings matrix R (m-by-n, with N> non-
zero ratings) into a m-by-fmatrix (#) and a f-by-n matrix (87).

Suppose we obtained m users ratings on items (say, movies). If user v rated item v, we use Tw, as the non-zero element of R at position (u, v). We want to
minimize the following cost function J. To avoid overfitting, we use weighted-A-regularization proposed in [1], where 7., and 7.V denote the number of total
ratings on user v and item v, respectively.

J - Zu,v(r"" - 'r:ﬁ")z + /\(Zu ”'-qu'r“ ||2 + Zr' ”'”“"f"rHH"H?‘)

Many optimization methods, including Alternating Least Squares [(ALS) and Stochastic Gradient Descent (SGD]) [1] have been applied to minimize .J. We adopt the
ALS approach, which first optimizes Xwhile fixing g, and then optimizes theta while fixing X. That is, in ane iteration we need to solve these two equations
alternatively:

Zrm._—)éo{ﬁraz_ —|— /\I) ST, = ﬁ]’") Rix (1)
Z’.""#U(JIHJ'T + /\I) ' Hr' = .\—T . H.H' (2)

u /

Kernels for Matrix Factorization

* Matrix Multiplication: For Matrix-Matrix and Matrix-Vector
Multiplication)

* Conjugate Gradient Solver: To solve system of linear
equations). This solver will solve the system of equations
in maximum K iterations. k is the number of features.

Continuous Integration and Deployment (CICD)

* Changes in different system
component can trigger various
actions including regression and
release

Kernels

* Need a dedicated Cl and release

server because of board test
component
* Similar to DevOps model in SW

Jenkins

Agile Development Process

* Fully embracing agile development methodology
* Fully open and transparent issue tracking
* Frequent stand-ups

* Monthly sprint cadence
* Planning
* Execution
* Retrospective TO DO IN PROGRESS DONE!

NV XL

never stop accelerating.

