
Design System for Machine Learning Accelerator

Joonyoung Kim
NVXL Technology
Senior Director of Machine Learning HW Development

09/13/2018

NVXL ACCELERATION PLATFORM

NVXL/Partner
Libraries

NVXL
Acceleration

Platform

NVXL & 3P
RTL/OCL
Kernels

Resource Provisioning Layer

Runtime System

Model-Data Parallel Data Flow Optimizer

Data Flow Compiler

Deep learning Templates OpenCL & RTL Kernels

Data Pipeline

Deep Learning Templates OpenCL & RTL Kernels

Other Frameworks & APIsCaffe2 Framework

Deep Learning, Big Data, Ops Applications

NVXL Acceleration Layer

Convolution

Pooling

Compression

Encryption

H.265

MatrixMult

Im2Col
Intel PairHMM

Intel DLA
Softmax

NAL FPGA Libraries

OpenCL Overview

Source: Khronos Initiative for Training and Education

OpenCL Overview

Source: Khronos Initiative for Training and Education

Why
OpenCL and
FPGA

Faster time-to-market (OpenCL vs RTL)

Quick design exploration

Easy design re-use

Faster design completion

Increased performance by offloading performance-
intensive functions from the host processor to the FPGA

Significantly lower power than a GPU or multicore CPU by
using OpenCL, which generates only the logic needed

FPGA
Accelerator
Design
Process

Analyze Analyze performance bottleneck and fix

Integrate Integrate into overall system and run performance test

Plan and
develop

Plan and develop kernels for FPGA acceleration

Modify and
release

Modify and release device drivers

Plan and
develop

Plan and develop BSP (Board Support Package)

Machine Learning Accelerator on FPGA

• Design consideration
• High throughput for popular CNNs

• Low latency

• DRAM bandwidth

• DSP and BRAM utilization

• Number of MACs

• Amount of parameters

• Accuracy

Data Parallelism

• Same model mapped to multiple FPGAs

• Data is split by orchestration SW into different mini batches and
processed in parallel

• Overall performance scales linearly with number of modules

Source: https://arxiv.org/pdf/1802.09941.pdf

Model Parallelism

• Take a complex stage (layer) and split into multiple modules
• E.g. 128x128 matrix is split into sixteen 32x32 matrices and processed in

parallel

• Initially done to balance out overall run time

• Requires explicit synchronization

Source: https://arxiv.org/pdf/1802.09941.pdf

Pipeline Parallelism (Layer Pipelining)

• Multiple FPGAs are used to implement certain network that is too
large to fit in one FPGA

F1 F2 F3 F4

Host CPU

BSP
Development

Start with a vendor reference design

Identify feature set

Implement required features and verify

Board test

Deployment

Kernel
Development

Identify vertical areas

Computation modeling in C/C++
(often open source code)

Profiling and identify offloading opportunity

Design in OpenCL

Performance tuning

Deployment

Matrix Factorization

Kernels for Matrix Factorization

• Matrix Multiplication: For Matrix-Matrix and Matrix-Vector

Multiplication)

• Conjugate Gradient Solver: To solve system of linear

equations). This solver will solve the system of equations

in maximum k iterations. k is the number of features.

Continuous Integration and Deployment (CICD)

• Changes in different system
component can trigger various
actions including regression and
release

• Need a dedicated CI and release
server because of board test
component

• Similar to DevOps model in SW

BSP Driver

Kernels

SW

Agile Development Process

• Fully embracing agile development methodology
• Fully open and transparent issue tracking

• Frequent stand-ups

• Monthly sprint cadence
• Planning

• Execution

• Retrospective

