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Solido Overview

Application Areas:
Memory – Standard Cell – Custom Digital – Analog/RF

• Solido’s machine learning technologies provide disruptive 
customer benefits

• Integration with all major software tools and PDKs

• Trusted by top semiconductor companies

Founded: 2005

Focus: Variation-Aware Design and 
Characterization Software

Published customer case studies from:
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Machine Learning for Engineering Applications
Challenges and Solutions
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Machine Learning for Engineering Applications:
Massive Data

• Challenge:
→ High streaming data rates and

massive data archives

• Key technologies:
→ Optimized streaming parsers
→ Parallelizable algorithms
→ Efficient and scalable cluster management
→ Automated recovery and repair
→ Big data debugging
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Machine Learning for Engineering Applications:
Data Complexity

• Challenge:
→ High dimensionality, high-order interactions, 

discontinuities, non-linearities

• Key technologies:
→ Design of experiments tech
→ Advanced supervised learning
→ Intelligent screening and filtering
→ Outstanding benchmarking infrastructure
→ Big toolbox with lots of experience with tools
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Machine Learning for Engineering Applications:
Correctness

• Challenge:
→ Engineering problems require the right answer

• Key technologies:
→ Accuracy-aware modeling
→ Active learning
→ Self-verifying algorithms
→ Extensive internal benchmarking infrastructure
→ Customer-side benchmarking infrastructure
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Solido’s ML for Engineering Technology: Overview

• Solido’s generic ML for engineering flow
• Used for solving a variety of different problems

• Basis for many of Solido’s tools in the simulation space:
→ Fast PVT
→ Statistical PVT
→ High-Sigma Monte Carlo
→ Hierarchical Monte Carlo
→ PVTMC Verifier
→ Cell Optimizer
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Optimization

Self-Verification

Knowledge Extraction
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example

• We know nothing about the circuit – need some data
• We have a set of conditions to explore; e.g.:
→ Temp: -40, 25, 80, 125, 150
→ Vdd: 0.52, 0.65, 0.8, 0.92, 1.1, 1.3
→ Process: FF, SS, TT, FS, SF
→ 150 combinations

• We want to cover the space as efficiently as possible; we use 
design of experiments to figure that out; e.g.:
→ Independent sweeps: 14 simulations

 Gives detailed main effects
→ Fractional factorial: 11 simulations

 Reveals interaction effects between variables

• E.g. simulated just 25/150 simulations, and we have a good basis 
for model building
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example

• Build an accuracy-aware model the full space; e.g.:
→ Use the 25 simulated points that cover independent effects and interaction 

effects
→ For each measurement (e.g. gain, bw), build a regression model
→ Model must capture:

 Non-linearities
 Discontinuities
 Interactions (e.g. temp * vdd effect)
 Accuracy (i.e. the +/- on the estimated values)

• Use that model to predict the remainder of the values
→ E.g. From 25 simulated values, predict the remaining 100

• Now we have accuracy-aware predictions for all values
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example

• We want to now focus on the area of interest and get perfect 
results there

• E.g. For gain, we want to simulate the lowest gains
• Since the model is accuracy-aware, we can simulate any gain that 

might have the lowest value
• We can also rebuild models after every result comes in to tighten 

accuracy on other estimates – this saves simulation

• E.g.: We may simulate another 5/125 worst case gain candidates
• The result is perfect SPICE accuracy in the worst case
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example

• We now have perfect results for worst cases, but we also want to 
ensure high-quality estimates through the rest of the range

• Since the model is accuracy-aware, we can simulate anywhere the 
model is too loose:
→ Target sparseness
→ Target areas where there is a lot of change

• This tightens up all predictions
• E.g. we might run another 5/125 simulations at areas with the 

loosest model accuracy to tighten up the space
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example

• We now have:
→ Perfect SPICE accuracy in the tail
→ Good estimates through the rest of the space

• …and now we need to prove it to the engineer
• We show clearly that the model’s predictions and the actual 

simulation results line up
• We can also run additional verification simulations to prove that 

the model is accurate throughout the remainder of the space
→ E.g. run 5 more worst-case gain predicted samples and show that the 

predicted value and the actual value are very close, and that the values are 
no worse than the estimated worst case

• In the end, we run 40/150 simulations, have perfect accuracy in 
the worst cases, have good accuracy throughout, and we have 
given the designer confidence in the rigor of the approach.
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Solido’s ML for Engineering Technology: Overview

Initial Design of 
Experiments

Accuracy-Aware 
Supervised Learning

Active Learning

Model Building 
Optimization

Self-Verification

Knowledge Extraction

G
ai

n
7

0
   

   
   

   
   

   
   

   
   

 8
0

   
   

   
   

   
   

   
   

   
   

 9
0

Tested          Pred



21

Solido’s ML for Engineering Technology:
Basic Fast PVT Example

• Next, the designer may want to know exactly what caused 
performance shifts:
→ Temperature?
→ Vdd?
→ Process corner?
→ A combination?

• The knowledge extraction phase pulls out useful information for 
the designer about what caused shifts
→ E.g. Show that the interaction of temp*vdd was the dominant cause of 

shifts, and let designers surf the response surface to understand exactly 
how they interact
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Solido’s ML for Engineering Technology:
Basic Fast PVT Example
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Solido ML Techniques:
Key Benefits

• Solido has been applying ML to simulation and characterization for 12 years
• Key benefits:
→ Full coverage of worst-case PVT conditions 2-50X faster than brute-force
→ Accurate 3-sigma coverage 10X faster at 1 PVT condition, and >100X faster across multiple PVT 

conditions at once
→ Accurate high-sigma verification with the same accuracy as millions or billions of Monte Carlo 

samples in just 1000s of simulations
→ Fully automated cell-level variation-aware circuit optimization
→ Knowledge extraction pinpointing causes of variation
→ 50% faster timing model (.lib) characterization
→ Monte Carlo accurate statistical timing model generation, >1000X faster than Monte Carlo
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Solido Product Families
Disruptive Solutions Built On Solido’s ML For Engineering Tech

Solido Variation Designer

Accurate & fast variation-aware design 
and verification of memory, standard cell, 

and analog/RF

Solido ML Characterization Suite

Accelerates characterization of
Standard Cells, Memory, and I/O with

Machine Learning



25

Netlist or
Virtuoso® ADE

Solido Variation Designer – Product Overview

Solido Variation Designer

High-Sigma Monte Carlo
MC & SPICE accurate 
high-sigma verification

Hierarchical Monte Carlo
Full-chip memory 

statistical verification

PVTMC Verifier
Unprecedented coverage 
and speed for PVT & MC

Fast PVT
2-50X faster verification 

across corners

Fast Monte Carlo
Fast and accurate 3σ
verification & design

Cell Optimizer
Fast and accurate 

optimization of std. cells

DesignSense
Variation-aware design 

sensitivity

Run Corners
Fast design iteration & 

debugging

Parallel Analysis InterfacePDK Interface Design & Test Interface

HSPICE®, CustomSim™, FineSim™

Spectre®/APS/XPS/RF, Eldo®

Analog FastSPICE™, GoldenGate, SmartSpice
Custom simulators

TSMC, GLOBALFOUNDRIES
Samsung, UMC, TowerJazz

Custom Internal PDKs, Others
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Solido ML Characterization Suite – Product Overview

Solido ML Characterization Suite

Predictor
Reduces characterization

runtimes by 30-70%

Statistical Characterizer
Fast, Monte Carlo accurate 
LVF/AOCV/POCV generation
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Solido ML Techniques Per Product
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Solido ML Labs

• Opportunity:
→ Many EDA problems can be solved with ML based 

approaches
→ Solido ML Labs is a platform for bringing up new ML 

based technologies to solve new problems

• Approach:
→ Solido partners with lead customer
→ Solido+partner carefully define the problem
→ Solido prototypes a solution and runs a proof-of-

concept study using partner production data
→ If successful, Solido productizes the solution working 

with partner company




