#### Solido Machine Learning for Engineering

Jeff Dyck EDPS 2017

1

#### **Solido Overview**

## solido

Founded: 2005

Focus: Variation-Aware Design and Characterization Software

Published customer case studies from:

#### **Application Areas:**

Memory – Standard Cell – Custom Digital – Analog/RF

- Solido's machine learning technologies provide disruptive customer benefits
- Integration with all major software tools and PDKs
- Trusted by top semiconductor companies





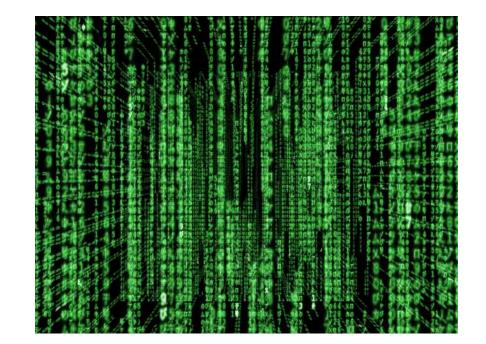
#### Machine Learning for Engineering Applications Challenges and Solutions


Massive data

- Optimized streaming parsers
- Parallelizable algorithms
- Massively scalable solutions

Complexity

Advanced supervised learning
Big toolbox of modeling


- technologies
- Smart filtering





#### Machine Learning for Engineering Applications: Massive Data

- Challenge:
  - → High streaming data rates and massive data archives
- Key technologies:
  - $\rightarrow$  Optimized streaming parsers
  - $\rightarrow$  Parallelizable algorithms
  - → Efficient and scalable cluster management
  - $\rightarrow$  Automated recovery and repair
  - $\rightarrow$  Big data debugging




#### Machine Learning for Engineering Applications: Data Complexity

#### • Challenge:

→ High dimensionality, high-order interactions, discontinuities, non-linearities

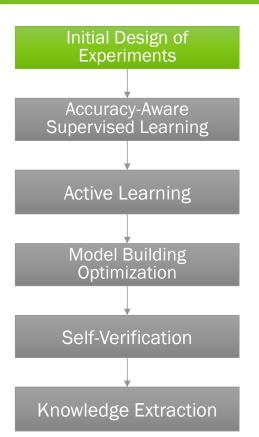
#### • Key technologies:

- $\rightarrow$  Design of experiments tech
- $\rightarrow$  Advanced supervised learning
- → Intelligent screening and filtering
- → Outstanding benchmarking infrastructure
- $\rightarrow$  Big toolbox with lots of experience with tools



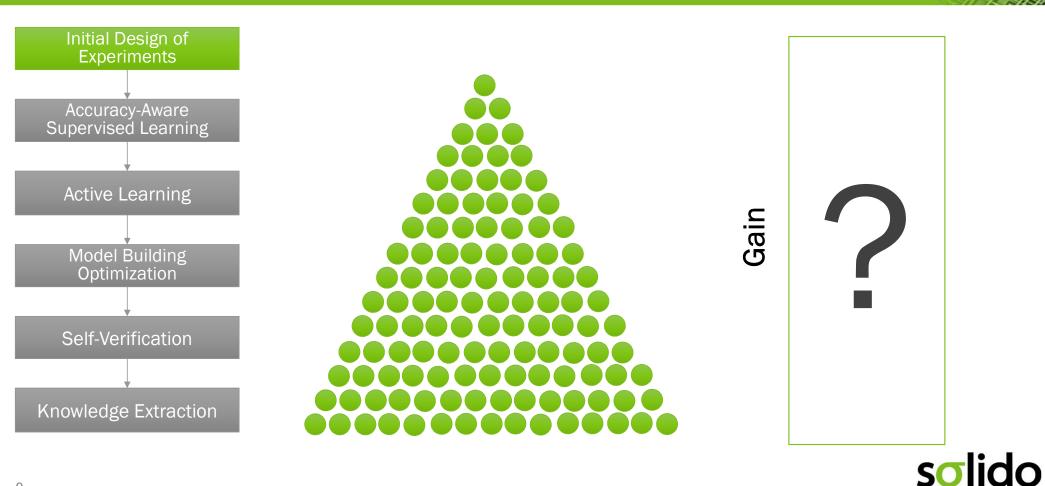
#### Machine Learning for Engineering Applications: Correctness

- Challenge:
  - → Engineering problems require the *right* answer
- Key technologies:
  - → Accuracy-aware modeling
  - $\rightarrow$  Active learning
  - $\rightarrow$  Self-verifying algorithms
  - → Extensive internal benchmarking infrastructure
  - → Customer-side benchmarking infrastructure



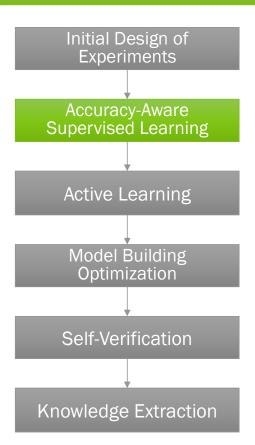



#### Solido's ML for Engineering Technology: Overview




- Solido's generic ML for engineering flow
- Used for solving a variety of different problems
- Basis for many of Solido's tools in the simulation space:
  - $\rightarrow$  Fast PVT
  - $\rightarrow$  Statistical PVT
  - $\rightarrow$  High-Sigma Monte Carlo
  - $\rightarrow$  Hierarchical Monte Carlo
  - $\rightarrow$  PVTMC Verifier
  - $\rightarrow$  Cell Optimizer

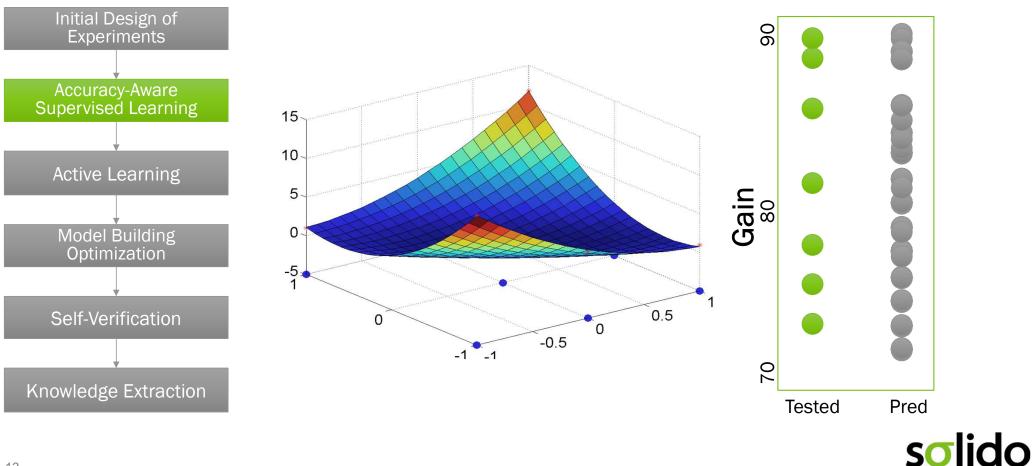


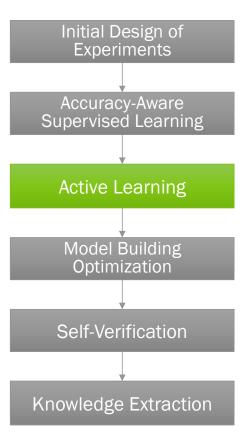

- We know nothing about the circuit need some data
- We have a set of conditions to explore; e.g.:
  - → Temp: -40, 25, 80, 125, 150
  - → Vdd: 0.52, 0.65, 0.8, 0.92, 1.1, 1.3
  - $\rightarrow$  Process: FF, SS, TT, FS, SF
  - $\rightarrow$  150 combinations
- We want to cover the space as efficiently as possible; we use design of experiments to figure that out; e.g.:
  - → Independent sweeps: 14 simulations
    - Gives detailed main effects
  - → Fractional factorial: 11 simulations
    - Reveals interaction effects between variables
- E.g. simulated just 25/150 simulations, and we have a good basis for model building





9



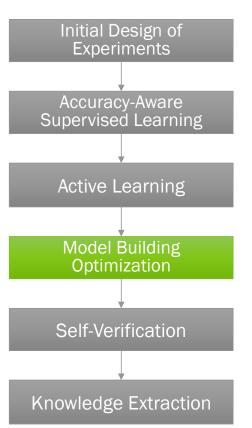




- Build an accuracy-aware model the full space; e.g.:
  - → Use the 25 simulated points that cover independent effects and interaction effects
  - $\rightarrow$  For each measurement (e.g. gain, bw), build a regression model
  - $\rightarrow$  Model must capture:
    - Non-linearities
    - Discontinuities
    - Interactions (e.g. temp \* vdd effect)
    - Accuracy (i.e. the +/- on the estimated values)
- Use that model to predict the remainder of the values  $\rightarrow$  E.g. From 25 simulated values, predict the remaining 100
  - New we have accuracy owere predictions for all value
  - Now we have accuracy-aware predictions for all values

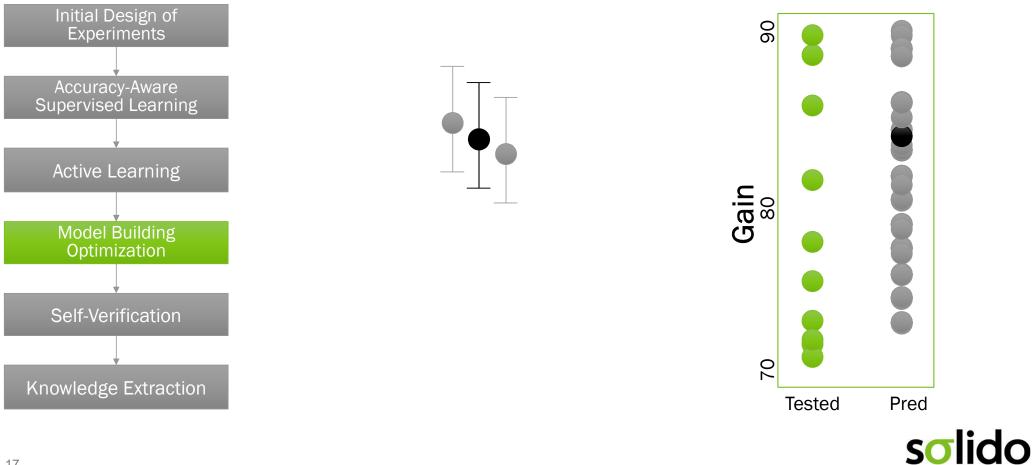
## s<del>o</del>lido



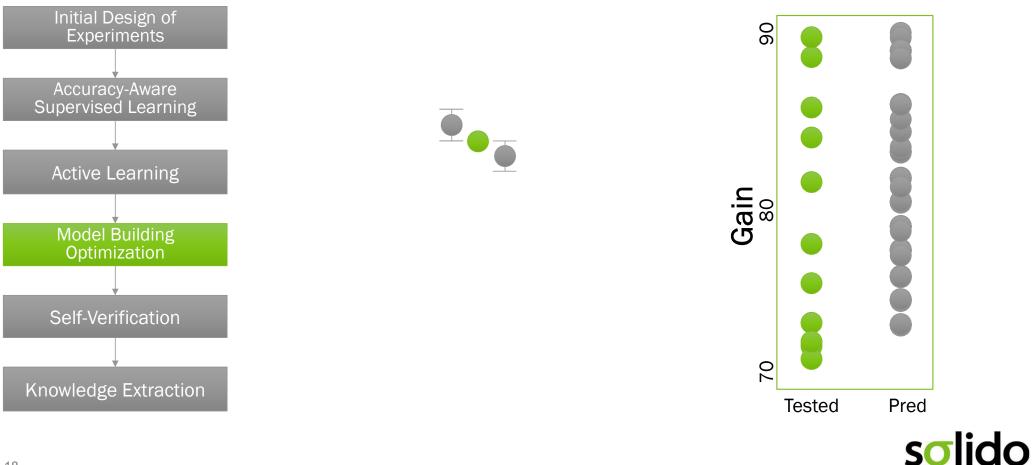


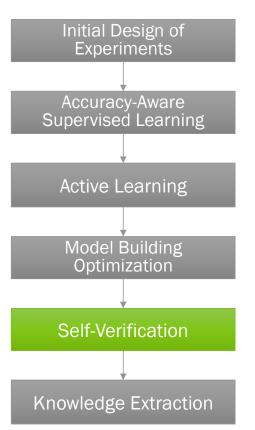



- We want to now focus on the area of interest and get perfect results there
- E.g. For gain, we want to simulate the lowest gains
- Since the model is accuracy-aware, we can simulate any gain that might have the lowest value
- We can also rebuild models after every result comes in to tighten accuracy on other estimates this saves simulation
- E.g.: We may simulate another 5/125 worst case gain candidates
- The result is perfect SPICE accuracy in the worst case


## s<del>o</del>lido




15

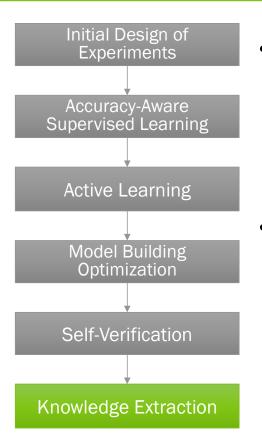



- We now have perfect results for worst cases, but we also want to ensure high-quality estimates through the rest of the range
- Since the model is accuracy-aware, we can simulate anywhere the model is too loose:
  - $\rightarrow$  Target sparseness
  - ightarrow Target areas where there is a lot of change
- This tightens up all predictions
- E.g. we might run another 5/125 simulations at areas with the loosest model accuracy to tighten up the space

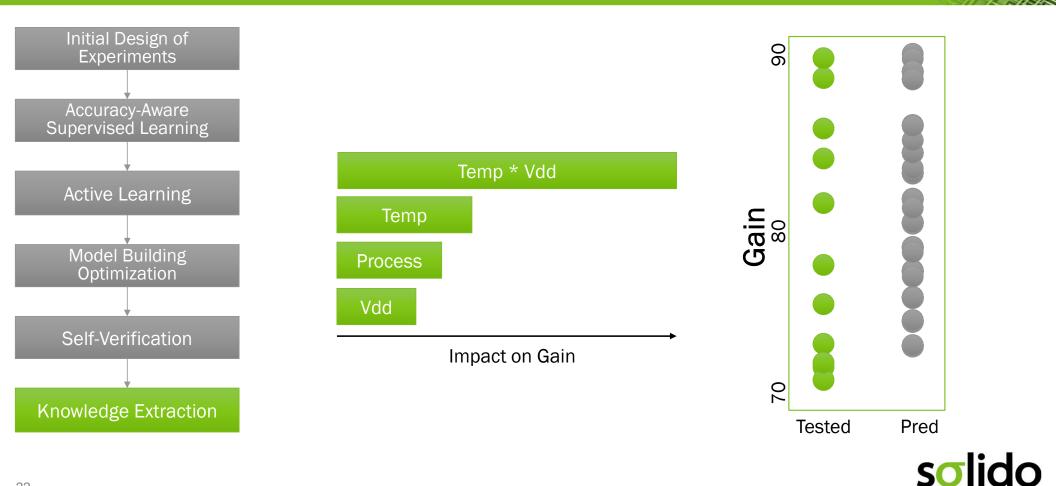


17






- We now have:
  - $\rightarrow$  Perfect SPICE accuracy in the tail
  - ightarrow Good estimates through the rest of the space
- ...and now we need to prove it to the engineer
- We show clearly that the model's predictions and the actual simulation results line up
- We can also run additional verification simulations to prove that the model is accurate throughout the remainder of the space
  - → E.g. run 5 more worst-case gain predicted samples and show that the predicted value and the actual value are very close, and that the values are no worse than the estimated worst case
- In the end, we run 40/150 simulations, have perfect accuracy in the worst cases, have good accuracy throughout, and we have given the designer confidence in the rigor of the approach.




#### Solido's ML for Engineering Technology: Overview





- Next, the designer may want to know exactly what caused performance shifts:
  - → Temperature?
  - $\rightarrow$  Vdd?
  - $\rightarrow$  Process corner?
  - $\rightarrow$  A combination?
- The knowledge extraction phase pulls out useful information for the designer about what caused shifts
  - → E.g. Show that the interaction of temp\*vdd was the dominant cause of shifts, and let designers surf the response surface to understand exactly how they interact

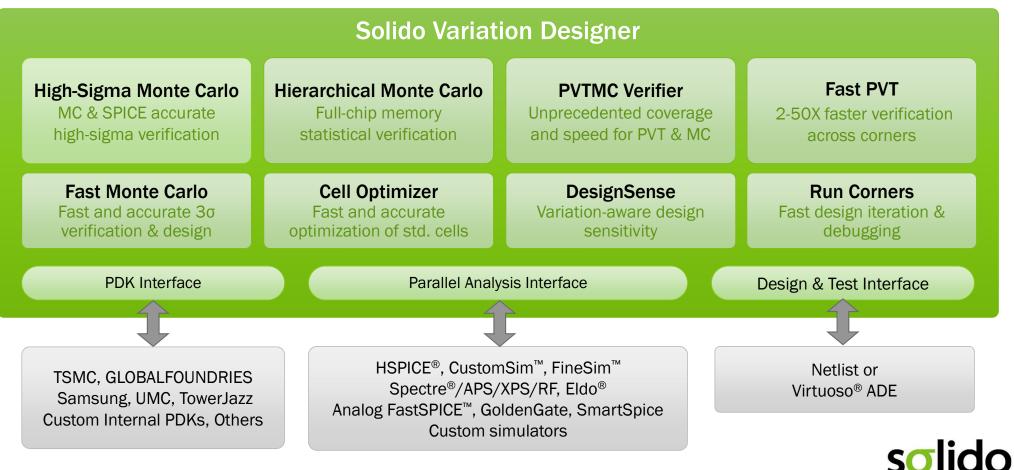


#### Solido ML Techniques: Key Benefits

- Solido has been applying ML to simulation and characterization for 12 years
- Key benefits:
  - → Full coverage of worst-case PVT conditions 2-50X faster than brute-force
  - → Accurate 3-sigma coverage 10X faster at 1 PVT condition, and >100X faster across multiple PVT conditions at once
  - → Accurate high-sigma verification with the same accuracy as millions or billions of Monte Carlo samples in just 1000s of simulations
  - → Fully automated cell-level variation-aware circuit optimization
  - → Knowledge extraction pinpointing causes of variation
  - → 50% faster timing model (.lib) characterization
  - → Monte Carlo accurate statistical timing model generation, >1000X faster than Monte Carlo



Solido Product Families Disruptive Solutions Built On Solido's ML For Engineering Tech


#### **Solido Variation Designer**

Accurate & fast variation-aware design and verification of memory, standard cell, and analog/RF

#### **Solido ML Characterization Suite**

Accelerates characterization of Standard Cells, Memory, and I/O with Machine Learning

#### **Solido Variation Designer – Product Overview**



#### **Solido ML Characterization Suite – Product Overview**

#### **Solido ML Characterization Suite**

Predictor Reduces characterization runtimes by 30-70% Statistical Characterizer Fast, Monte Carlo accurate LVF/AOCV/POCV generation

#### **Solido ML Techniques Per Product**

|                           | Design of<br>experiments | Supervised<br>learning | Active<br>learning | Knowledge<br>extraction | Parameter<br>filtering | Clustering | Density<br>estimation | Deep<br>learning | Solido<br>proprietary |
|---------------------------|--------------------------|------------------------|--------------------|-------------------------|------------------------|------------|-----------------------|------------------|-----------------------|
| Variation Designer        |                          |                        |                    |                         |                        |            |                       |                  |                       |
| Fast PVT                  | ~                        | ~                      | ~                  | ~                       |                        |            |                       |                  | ~                     |
| Fast Monte Carlo          |                          |                        |                    | ~                       |                        |            | ~                     |                  | ✓                     |
| Cell Optimizer            | ~                        | ~                      | ~                  |                         | ~                      |            |                       |                  | ~                     |
| Fast DesignSense          | ~                        | ~                      |                    | ~                       |                        |            |                       |                  | ~                     |
| Statistical PVT           | 1                        | ~                      | ~                  | ~                       |                        |            |                       |                  | ~                     |
| <b>PVTMC</b> Verifier     | 1                        | ~                      | ~                  | ~                       | ~                      | ~          | ~                     |                  | ~                     |
| High-Sigma Monte Carlo    | 1                        | ~                      | ~                  | ~                       | ~                      |            | ~                     | ~                | ~                     |
| Hierarchical Monte Carlo  | ~                        | ✓                      | ~                  | ✓                       | ~                      |            | ~                     | ✓                | ✓                     |
| ML Characterization Suite |                          |                        |                    |                         |                        |            |                       |                  |                       |
| Predictor                 | 1                        | ~                      | ~                  | ~                       |                        |            |                       |                  | 1                     |
| Statistical Characterizer | 1                        | ~                      | ~                  |                         | 1                      | 1          |                       |                  | 1                     |



#### Solido ML Labs

#### • Opportunity:

- → Many EDA problems can be solved with ML based approaches
- → Solido ML Labs is a platform for bringing up new ML based technologies to solve new problems

#### • Approach:

- ightarrow Solido partners with lead customer
- $\rightarrow$  Solido+partner carefully define the problem
- → Solido prototypes a solution and runs a proof-ofconcept study using partner production data
- → If successful, Solido productizes the solution working with partner company



