

Machine Learning: Design, Development and Augmented Intelligence

David White Virtuoso R&D September, 2017

cādence[®]

© 2017 Cadence Design Systems, Inc. All rights reserved

Three Challenges Facing EDA

Design Challenges That Are Faced Today

Scale

- Larger designs
- More rules and restrictions
- More data (simulation, extraction, shapes, techfiles)

Complexity

- More complicated silicon technologies (FinFET)
- · More complicated design and electrical rules
- More interactions between chip, package and board
- Thermal related impact between devices and wires

Productivity

- More Uncertainty leads to re-design and missed schedules
- Limited number of capable, trained design and layout engineers
- Larger Complexity and Scale... more activities in same schedule

✓ EDA wrestles with many Data Driven problems

- ✓ Need to provide answers quickly, design-time solutions
- ✓ Heavy degree of automation needed
- ✓ What-if analysis to explore alternative solutions faster

One impacts the others

ML Based Layout Generation for Chip Design

Today

Complexity of ML Based Design Decisions

Using Past Data for Future Design

5

Why is This Problem So Difficult

- Decision processes like CAD/EDA systems are uncertain
- Environmental factors and circumstances that influence a user's decisions may be unobservable such as design intent or preferences
- Often process is dynamic... decision V may rely on prior decisions Q, R and S
- Often useful features that are observable but not labeled, requiring feature extraction or feature selection
- Cumulative effects yield uncertainty and that leads to error

Potential Solution: Augmented Intelligence

© 2017 Cadence Design Systems, Inc. All rights reserved

cādence[°]

Four Powerful Tools for Intelligent Design Solutions

Data Driven Problems Require More Intelligent Solutions

- Scale: more data needs to be processed in a shorter period of time
- Complexity: data driven machine learning models and analytics can capture complicated relationships
- Productivity: more analysis and verification during design, ensuring correct by construction and intent maintained throughout

Intelligent Solutions Apply to:

- Embedded Mobile
- IoT
- Cloud-based Services
- Scheduling/Logistics
- Transportation
- Finance

...and yes, CAD Systems

Design and Development of Intelligent Solutions

Data Driven Problems Require More Intelligent Solutions

9

Output of CNN Based Image Analysis

How you label and structure your training set heavily impacts results

Farabet, Couprie, Najman, LeCun, "Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers", ICML 2012

So How to Handle Large Dimensional Data

Feature Extraction and Dimensionality Reduction

Feature Extraction

- Data sampled from two variables (x,y)
- · Can we reduce this to one variable?
- Find eigenvectors (v1,v2) of covariance matrix
- Observe that most of variance is captured by v1
- Multiply original x,y data onto 1st eigenvector (v1)
- New basis reduces dimension from 2 to 1

Different extremes of feature extraction

FACIAL RECOGNITION

Deep-learning neural networks use layers of increasingly complex rules to categorize complicated shapes such as faces.

Layer 1: The computer identifies pixels of light and dark.

Layer 2: The

computer learns to

identify edges and simple shapes.

Deep Learning (CNN) has Feature Extraction Built-in to Training

More on that later

Layer learn comp object

Layer 3: The computer learns to identify more complex shapes and objects.

Layer 4: The computer learns which shapes and objects can be used to define a human face. Lee, H., et. Al, Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations , Proceedings of the 26th International Conference on Machine Learning, Montreal, Canada, 2009.

cādence°

© 2017 Cadence Design Systems, Inc. All rights reserved

© 2017 Cadence Design Systems, Inc. All rights reserved

16

What is Deep Learning?

Deep refers to more layers

Reference: Tensor Flow Machine Learning Tutorial, Google-TensorFlow, https://www.tensorflow.org/versio ns/r0.9/tutorials/mnist/beginners/i ndex.html

From: Efficient mapping of the training of Convolutional Neural Networks to a CUDAbased cluster, http://parse.ele.tue.nl/educatio n/cluster2

cādence

© 2017 Cadence Design Systems, Inc. All rights reserved

17

Augmented Intelligence:

Augment knowledge of the expert user using machine learning to recommend correct actions across sequential decisions in uncertain environments

© 2017 Cadence Design Systems, Inc. All rights reserved

Applications for Machine Learning in EDA

- Fast Models for Parasitic Extraction
- Hotspot Detection in Layout
- Place and Route
- Macro-models for Circuit Simulation

Machine Learning Used in Virtuoso EAD to Estimate In-Design Capacitance

Extracted C parasitics estimated in real-time as each incremental change is made Canvas view

Augmented Intelligence for Virtuoso

Thank you!

QUESTIONS ?

24 © 2017 Cadence Design Systems, Inc. All rights reserved

cādence[°]

cādence[®]