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Machine Learning

 Learning from Data

Massive Data

Train or Fit a Model
e.g. Neural Network

Use model to 
recognize previously 

unseen examples
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… Types of Learning

 Off-line learning
 Optimized neural network against a fixed training set 

using off-line optimization

 Usually labeled data

 Incremental Learning
Modify learning using inline data

 Usually labeled data

 On-line (In-line) learning
 Learn entirely using data in the field

 Alternate learning and inference cycles

 Sometimes unlabeled dta



5

Questions being addressed @ NCSU

 What does machine learning mean to hardware 
designers?

A. A. Building computation engines that 
specialize in machine learning.

B. Applying machine learning to EDA.
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Surrogate Modeling

 “Train” a global 
model that is fast to 
evaluate from 
multiple evaluations 
of a detailed model 
that is slow to 
evaluate

x® f (x)® y

Surrogate Model

Yes

Create 
model(s)

Estimate model 
accuracy

no

Done

No

Detailed Model

Select new 
samples

Start

Select initial
samples

Improvement?

Yes

Accuracy
Reached?
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Surrogate Modeling

11

Basic idea: Accurately approximating the black-box design 
with limited number of samples.

Objective:

:  Model Error
: Design Response
: Model Prediction

Advantages:
• Modeling accuracy and efficiency 
• Fast to execute – mathematical expressions vs. systematic simulation
• Various modeling techniques exists for choices: Kriging, Radial-based 

functions, neural networks, etc.

Accuracy: ∑ ௬ି௬
మ

సభ

∑ ௬ି௬ത మ
సభ
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Outline

 Introduction

 Applying Machine Learning to EDA
 IP Reuse
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 Improving DFM design closure*

 Accurate modeling for high speed IO*

 Conclusions

*Wont be presented today



Principal Investigators
Elyse Rosenbaum, Illinois (Center Director)

Paul Franzon, NCSU (Site Director) 
Madhavan Swaminathan, Georgia Tech (Site Director)

Applying Machine Learning to 
Electronic Design



Vision

This is NOT our vision
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Vision

To enable fast, accurate design and verification of 
microelectronic circuits and systems by creating 
and applying machine learning algorithms to derive 
models used for electronic design automation

– These models can also be used to obscure IP
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Design Space
Design Goals

Detailed 
Simulator/
Evaluator

Spice  EM-sim
TCAD Physics
DFM

(slow)

Machine
Learning

Environment

Fast
Model

Design & 
Optimization 
Environment

RBF, Kriging
ANN, CN
Etc.

Process 
Variations



ML in EDA Progression

1st Generation:  Big data models for improving 
design productivity through machine learning

2nd Generation: “Little data” models for improving 
design productivity through machine intelligence

3rd Generation: Models and methods to flatten the 
design and verification hierarchy
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CAEML

Center for Advanced Electronics Through 
Machine Learning

Joint NSF/industry funded center

Industry cost:  $50,000 per year

Benefits:  Rights to all IP; Early access to students; 
Mentor/guide/select projects

13



14

INTELLECTUAL PROPERTY REUSE THROUGH
MACHINE LEARNING

Weiyi Qi, Bowen Li, Yang Yi, Brian Floyd, Paul Franzon 
North Carolina State University



Problem Statement

• Port analog and custom digital IP from one 
technology to another, e.g.
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Solution Alternatives
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Approach Pros Cons
Optimization using 
Spice Model

Direct, accurate Very long latency

Optimization using 
design equations

Quick Inaccurate

Expert design 
system

Works well Requires expertize
to be captured for 
each individual 
design

Optimization using 
Surrogate Model

Quick, accurate Requires SM to be 
fitted offline

Bayesian
optimization

Accurate, fewest 
overall simulations, 
Can start with SM

Longer latency than 
using SM only
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Bayesian Optimization

• We propose to use a Bayesian optimization technique for efficient 
design optimization:

Let denote the statistical model and the samples; we have:

Prior ModelLikelihoodPosterior
• Bayesian optimization flow:

(𝑓)
Surrogate Model 

(𝑓)

Acquisition Function

Update

∗∗𝑦∗𝑦∗

𝑃(𝑓)

𝑃(𝐷|𝑓)

Simulator

𝑷(𝒇|𝑫)

Two key components:

(1) Statistical surrogate model: 
• Gaussian Process (GP) models or 

Student-T Process (TP) models 

• Fit existing data and predict 
performance expectation and 
uncertainty; prior models are updated 
with newly acquired sample to form 
posterior models 

(2) Acquisition function: 
• Determining next best sample to 

simulate

performance parameter



Bayesian Optimization: Picking Next 
Point to Simulate 
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 Probability of Improvement (PI) calculates how probable it is that 
simulating a new point will improve f(x) at that point

Plot from: Forrester, Alexander, Andras Sobester, and Andy Keane. Engineering 
design via surrogate modelling: a practical guide. John Wiley & Sons, 2008.

PI = area in black



Circuit Blocks to be Studied

• 77-GHz vehicular radar blocks:
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• SerDes:
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Preliminary Results:
Porting 77-GHz Balun from 8XP to 9HP

• 77-GHz PA uses balun at output. Conceptually simple, but 
surprisingly complicated to optimize through ML. 

• Bayesian optimization subroutine first applied in existing 
technology (8XP).

• Then we reuse the balun in 9HP process with the same 
approach; the final optimized design will be used for tape-out
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Design 
Analysis

Starting Point: 
8XP Balun

ML: Bayesian 
Optimization 

Sub-flow

Design Parameters

Objective Function

ML: Bayesian 
Optimization 

Sub-flow

9HP Models

Reused Design in 
Tech B

Optimized Design 
in Tech A

8XP Models



Step 1: Defining Range and 
Requirements for Balun
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An LC balun is a commonly used passive balun in microwave IC that 
converts a signal into a pair of out-of-phase signals, or vice versa, while 
suppressing the common mode on the balanced port output. 

Design Parameter Range

I0_l [30u, 1000u]

I0_w [2u, 100u]

I0_s [3u, 20u]

I1_l [30u, 1000u]

I1_w [2u, 100u]

I1_s [3u, 20u]

C0 [20f, 200f]

C1 [20f, 200f]

S-Parameters Requirements

|𝑆ଷଷ| N.A. (< -10 pref.)

𝑆ଶଶ  − 𝑆ଵଵ

𝜙 𝑆ଶଶ − 𝑆ଵଵ

< 0.1
< 15

P1:
Balanced +
50 Ohm

P3:
Unbalanced port
50 Ohm

P2:
Balanced -
50 Ohm

S-Parameters Requirements

𝑑𝐵 𝐿𝑜𝑠𝑠(𝑆ଶଷ, 𝑆ଵଷ) > -5

𝑆ଶଷ − 𝑆ଵଷ

𝜙 𝑆ଶଷ − 𝑆ଵଷ − 180
< 0.1
< 15



Step 2a: Design Analysis: Input 
Parameter Screening

• Design parameter screening

– Not all design parameters are of equal importance
– Large number of parameters will induce the curse of dimensionality

• The modified Morris’ screening algorithm (Campolongo, 2007) uses one-
factor-at-a-time (OFAT) sample scheme that depends linearly on the number 
of design parameters; suitable for complex design analysis.

High importance 
High interaction

High importance 
Low interaction

Low importance 
High interaction

Low importance 
Low interaction

Result:

• Trimmed two parameters that have 
low importance
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Step 2b: Design Space Exploration
• Design objective analysis:

– Design objective analysis prevents over- or underestimated design goals
– Designer can also learn about the design tradeoffs, either graphically or 

numerically, by examining the correlation coefficient table.
– Designer can also find the upper- and lower-bounds for each design 

objective, and map them to [0,1] for multi-objective optimization 
scalarization.

Result:

• Feedback to user 
on trade-offs, 
correlations, and 
conflicts.

23

Goal 1

Goal 2

Goal 3

Goal 4

Goal 5

Goal 6

Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6



Step 3: Optimization in Existing 
Technology
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Bayesian Opt. is 
>3x more efficient

O
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Three approaches for optimizing the balun design are compared:

(1) Genetic programming: A representation of evolutionary programming algorithms 
that are widely used for analog design synthesis/reuse

(2) Bayesian optimization: Use Gaussian process surrogate model 

(3) Bayesian optimization: Use Student T process surrogate model



Step 3: Balun Optimization 
Result in Existing Technology
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Metric Target Human Result ML Result

|𝑆ଷଷ| < -10 -7.7 -10.5

𝑆ଶଶ  − 𝑆ଵଵ < 0.1 0.22 0.06

𝜙 𝑆ଶଶ − 𝑆ଵଵ < 15 25.5 9

𝑆ଶଷ − 𝑆ଵଷ < 0.1 0.31 0.09

𝜙 𝑆ଶଷ − 𝑆ଵଷ − 180 < 15 28.7 4.5

𝑑𝐵 𝐿𝑜𝑠𝑠(𝑆ଶଷ, 𝑆ଵଷ) > -5 -9.4 -4.8

Human Design

S33

S11
S22

S13

S23

S33

S13

S23

S22
S11

ML Design



Step 4: Porting to New Technology (9HP)
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Metric Target Result in 8XP Result in 9HP 

|𝑆ଷଷ| N.A. (< -10 pref.) -10.5 -9.7

𝑆ଶଶ  − 𝑆ଵଵ

𝜙 𝑆ଶଶ − 𝑆ଵଵ

< 0.1
< 15

0.06
9

0.01
1.5

𝑆ଶଷ − 𝑆ଵଷ

𝜙 𝑆ଶଷ − 𝑆ଵଷ − 180
< 0.1
< 15

0.09
4.5

0.04
3.4

𝑑𝐵 𝐿𝑜𝑠𝑠(𝑆ଶଷ, 𝑆ଵଷ) > -5 -4.8 -2.4

S33

S11
S22

S13S23

Design Reuse in 9HP

Balun Design Reuse in 9HP
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Now we migrate the passive LC balun design into IBM 9HP node with three key components 
kept consistent, which makes IP migration a push-button process:

(1) Design IP topology

(2) Algorithm settings: 

– Surrogate model type & acquisition function

(3) Design objective functions: 

– Objective scalarization weights



MACHINE LEARNING IN
PHYSICAL DESIGN

Bowen Li, Weiyi Qi,

Billy Huggins,

W. Rhett Davis,

Paul Franzon
ECE Department

North Carolina State University
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Physical Design

Source: Wikimedia Commons 

Takes 40 m
inutes every run

Partitioning

Floorplanning

Placement

Clock Tree 
Synthesis
Clock Tree 
Synthesis

Routing
(Global Route, 

Detailed Route)

Time Closure
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Routing

Problem Statement:
How to set up control knobs to achieve specific desired
outcomes
Input Knob Meaning

Clock Target Clock frequency

Num_layer Number of routing layers

Init_density_ratio % cell area

skew Clock skew

Sink_max_tran Clock tree leaf trans time

Buf_max_tran Clock tree buffer tr time

Output Units

Power W

Area Sq.mm.

Setup Slack ps

Hold slack ps

Congestion % density

DRC error 
count

count
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Initial Experiment

Cortex SOC:
Gate count: 18k gates
Net count: 18k nets
Target clock: 10 ns

Design Goal:
Minimize area while
meeting timing and being
DRC clean.

Technology:
NCSU 45 PDK
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Building a Surrogate Model

Model building:
- Each routing run takes 40 minutes
- Total of ~50 runs needed to complete model
- Total time: Overnight
- Kriging Model

Models fitted:
- Congestion
- Setup slack
- Hold slack

H
ol

d 
tim

e

MaxSkewSetMaxTran



Physical design results 
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Iter. CLKper Den. Layer
Max
Skew

Sink
Max
Tran

Cong. Viol
Hold
slack

Setup 
Slack

Comments

1 10 0.6 8 300 400
0.28H
/1.51V

105 -61.3ps 6.46ns
Over-congested;
Hold time violated

2 10 0.5 8 300 400
0.03H
/0.39V

6 -48.7ps 6.55ns
Over-congested; 
Hold time violated

3 10 0.45 8 300 400
0.02H
/0.11V

0 2.4ps 6.48ns
No DRC errors; hold 
fixed; hold margin is 
low

4 10 0.45 8 200 300
0.02H
/0.17V

0 10.5ps 6.37ns Final Design

 Design Iterations after model lookup

# of Standard Cells 39990
Area

(𝝁𝒎𝟐)
Core 98109.284 (313.224*313.224)
Chip 54363.008 (233.158*233.158)

Cell Density 55.4 %

 Surrogate model provides guidance for 
design & optimization

 Able to achieve an optimal design with 4 
iterations

 Human designer took 20 iterations
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Building a more accurate model

1. Data Selection

Power

Area

Hold Slack

Number of 
DRC Violations

Four 
Results 

after 
Detailed 

Route

Ten
Surrogate 

Models
for each
outputs

Machine 
Learning
Methods

Six 
Physical 
Design

Features

Clock_target

Num_layer

Init_density

ratio

SinkMaxTran 

BufMaxTran 

Ten
Results 

after 
Placem
ent & 
Global 
Route

hold_slack_trial
Worst Negative Slack
Total Negative Slack

violating_path
x_neg_5_8
x_neg_1_4

x_pos_0_10
x_pos_11_20
power_trial
area_trial
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Surrogate Modeling for GR in Physical Design
Surrogate Model Builders

• Kriging genetic

• Radial Basis Function (rbf)

• Kriging

• Artificial Neural Networks (ann)

• …

Surrogate 
Model
Fitting

Alternatives
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3. Surrogate Modeling for GR in Physical Design
Model Accuracy: Root Relative Squared Error

The Root Relative Squared Error (RRSE) is relative to squared error
compared to a simple predictor (the average of values).

 
RRSE = RSE = f

!
xi( ) - yi( )2 / yi - yi( )2åå

RRSE is close to 0 → model is much better than a simple predictor
RRSE is close to or larger than 1 → model is worse than a simple predictor

RRSE < 0.5 is the target.

Ten
Surrogate 

Models
for each
outputs

Ten
Results 

after 
Global 
Route

Six 
Physical 
Design

Features

Clock_target

Num_layer

Init_density

ratio

SinkMaxTran 

BufMaxTran 

hold_slack_trial
Worst Negative Slack
Total Negative Slack

violating_path
x_neg_5_8
x_neg_1_4

x_pos_0_10
x_pos_11_20
power_trial
area_trial
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3. Surrogate Modeling for GR in Physical Design
Model Performances

area_trial TNS violating_path WNS x_neg_1_4 x_neg_5_8 x_pos_0_10 x_pos_11_20 hold_slack_trial power_trial

anngenetic 0.000 0.242 0.383 0.076 0.496 0.295 0.136 0.139 1.001 0.922

ann 0.003 0.270 0.364 0.079 0.517 0.302 0.193 0.227 1.000 0.939

annfixed 0.003 0.267 0.411 0.090 0.536 0.302 0.201 0.181 1.002 0.948

rational 0.004 0.262 0.394 0.072 0.542 0.428 0.362 0.371 1.016 0.961

gpmlgenetic 0.000 0.310 0.392 0.090 0.521 0.439 0.366 0.376 1.000 0.929

kriginggenetic 0.001 0.311 0.459 0.096 0.591 0.382 0.269 0.275 1.101 0.942

lssvmgenetic 0.001 0.309 0.403 0.088 0.522 0.437 0.377 0.378 1.000 0.930

elm 0.000 0.322 0.400 0.093 0.523 0.448 0.373 0.377 1.000 0.936

kriging 0.000 0.338 0.461 0.176 0.612 0.405 0.297 0.307 1.003 1.003

gpmldirect 0.004 0.326 0.429 0.099 0.547 0.449 0.410 0.421 1.000 0.930

rbf 0.038 0.315 0.416 0.108 0.552 0.492 0.403 0.421 1.020 0.954

rbfgenetic 0.012 0.322 0.418 0.098 0.542 0.473 0.441 0.466 1.000 0.966

krigingpso 0.004 0.334 0.509 0.128 0.627 0.600 0.433 0.407 1.017 0.953

krigingoptim 0.028 0.391 0.511 0.126 0.812 0.651 0.340 0.688 1.040 1.130

krigingnsga 0.064 0.635 0.683 0.133 0.637 0.650 0.622 0.650 1.060 0.973

ipol 0.079 0.369 0.798 0.098 0.812 0.791 0.808 0.829 1.064 1.397

Sum
ofRRSE

increases



37

3. Surrogate Modeling for GR in Physical Design
GR Modeling Conclusion

Global Results can be predicted correctly:
• Area, Total Negative Slack, number of violating paths, Worst Negative 

Slack, four groups of remaining tracks

Best Model Builder:
• Anngenetic

Outputs labels
hold_slack_trial

Worst Negative Slack
Total Negative Slack

violating_path
x_neg_5_8
x_neg_1_4
x_pos_0_10
x_pos_11_20
power_trial
area_trial

Ten
Surrogate 

Models
for each
outputs

Ten
Results 

after 
Global 
Route

Six 
Physical 
Design

Features

Inputs lables

Clock_target

Num_layer

Init_density

ratio

SinkMaxTran 

BufMaxTran 
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4. Machine Learning for DR in Physical Design
DR Modeling Conclusion

• Linear regression model for power and area

• Neural Networks model for hold slack

• Decision Tree models for hold slack and the number of DRC violations

Four Final 
Results 

after 
Detailed 

Route

Linear or
Machine
Learning
Models

Ten
Results

after 
Global 
Route

hold_slack_trial
Worst Negative Slack
Total Negative Slack

violating_path
x_neg_5_8
x_neg_1_4

x_pos_0_10
x_pos_11_20
power_trial
area_trial

Power

Area

Hold Slack

Number of 
DRC Violations



Conclusions

• IP Reuse
– Can result in more optimal analog designs than 

human designer

– Can automate analog IP transfer between nodes

– AND provide models for mixed signal verification

• Physical Design
– Correct model choice permits problem to be modeled
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