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Bits, Cores & Fabrics:
the elements of infrastructure
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Data Center 
Infrastructure
in context
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Key Themes
• Data centricity
• New memories



Bits, Cores & Fabrics
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The foundation of infrastructure

BITS
Intelligent 
Bits, SDS

Service & 
SDN 

Connected 
Bits, RDMA
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Firmware Data	Paths Switches
control state flow

Universal System Concepts

Universal Hardware Concepts



SERVICESYSTEM

Systems, Services, Devices

Bit primacy historically at device level only
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The quest for data primacy
Follow the bits
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Graphic courtesy: ARM
We used to call them
Computer Centers!



Data at the Center: Why?
Sources, Varieties, Growth
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Typical One-Stop Online Portfolio
The perfect user data trap

CONTEXT-MEDIATED
TRANSACTIONS

Payment Fulfilment Logistics

CORE TOOLS & 
SERVICES

Browser App Store Location

CONTEXT
ANALYTICS

Activity &
Preference

Relevant &
Timely reco.

Entertainment InformationSocial

USER-FACING
PRODUCTS



The Cloud: What User Bits Vanish Into

The Cloud: Where bits gather context



THE RIGHT INFORMATION AT THE RIGHT TIME
… IN THE RIGHT CONTEXT

Business
value of

information

Time since inception

Expectedness

Contextualized information

Net gain from contextualization,
standing queries

“right time” 
benefit

Raw, new information

SLA

Net gain from batch ML,
ad hoc queries



Typical Storage Abstraction Cake

Often a shared utility owned by an Infrastructure & Ops team 
for internal properties + 1000s of ecosystem partners
+ IaaS customers?

Not uncommon to find multiple EBs across 100Ks servers

RAM$ VSSD VHDD COLD

Key-value
Database

Block
Repository

Scalable 
Access



User Data

• Generally,
– Never-say-no attitude!
– “Free & Unlimited” BYOC
– 40+% growth in photo 

and video tier
• Machine learning based 
information extraction

– Users revealing each 
other’s context in social 
graphs and CCOs
• Advertising gold!



Logging, and not just transactions

TLOG ALOG ELOG

The root of all data collection

TRANSACTION LOGGING

Business Critical Tx in 
Operational Data Stores

Paid transactions 
($0.10/tx)
à Free Transactions**

($0)

**Blockchain (FSI, pharma, …) for 
Distributed Ledger

APPLICATION LOGGING

SIEM (ArcSight), 
Kissmetrics (SaaS) and 
Google Analytics, spur a 
wave of app logging

5 EB in MSFT Cosmos!

LOG EVERYTHING

The user is the product

Every read 
becomes a write

PBs/day pour in from 
phones, fixed cameras, 
cars (GM), travelers, …



Lifecycles and Business Value
of Information
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Information Lifecycle Management

• Operational
– frequently 

updated 
during 72 
hours after 
creation

0-72 hrs 72 hrs – 2 wks Months Years Decades

Continuously Protect Optimize Archive

• Transitional
− infrequently 

updated
− converted to 

business record 
format

• Archival
− static

(rarely 
accessed)

− subject to long-
term records 
management

Driven more by protection and retention than by cost

Memory Map /
Declare and Use

Deep Freeze



Historical archive
(long-term retention)
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Extract, transform, load

Copy Data Management

Individual data marts
(decision support)

Test and 
development

Data
warehouseProduction

databases
Extract Correlate Contextualize

Information 
Quality



Toward MCA
Memory-centric
Computer Architecture
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Memory Centric Computing

©2017 Western Digital Corporation or its affiliates. All rights reserved. 

Shipping computation to the data

Works best when simple expressions computed 
against large number of data records

Power
Reduction in data movement count and distance

Performance
Parallelism, Bandwidth, and Latency

Cost
Low gate count embedded cores with future 
open ISA and tools

CPU

Near 
Memory

Far
Memory

Far
Compute

Data
Near 

Compute

Far
Compute

Near 
Compute

Near 
Memory

Far
Memory



iMemory: Bits meet Cores
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Beyond Devices: Data Primacy as the ticket to systems
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DEVICE

Opaque blocks

Embedded cores 
for soft logic

I/O expansion 
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Coherent 
accelerator fabric

Application 
acceleration cores

Application 
format bits

Database 
optimizer

File system

Block layer

Domain Specific Language optimizers are key



a new tier in the Data Center
where
Data can be Big and Fast
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Market Segments and Currently Architected Tiers

HPC Hyperscale 
Server

Enterprise 
Server

Enterprise
Storage, 

Converged

Compute
Tier

Memory-storage convergence in full swing.
Several monumental shifts driven by the need to query petabytes in real time
1. Hana,a database without an I/O stack
2. Spark and ML placing analytics in focus
3. Petabytes held in DRAM by memcached and redis
4. Kafka, a pub-sub system without any storage I/O
5. pmemobj, ext4-DAX maturing

Archive
Tier

All about highest capacity at the lowest cost.
Evolutionary shifts driven by the need to store and process exabytes at lowest cost
1. Unified scale-out filesystems for block-file-object
2. Spark and ML in Compute Tier highlight the need for bandwidth over latency in archive tier
3. Encryption, Access Control, Global deployment and wide-area optimization of data synch are key
Revolutionary shifts driven by the need to retain data for 20-100 years
1. Sustained investment in optical and DNA storage to create an alternative to tape below HDD tier
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Confluence of forces driving a memory-centric tier

HPC Hyperscale 
Server

Enterprise 
Server

Enterprise
Storage, 

Converged

Compute
Tier

Memory
Tier

Memory and storage converge
Accessing big data using I/O memory semantic

Memory disaggregates across fabric
Provision working memory for peak median usage

Memory-centric addressing
Bulk of processing happens near the CPU memory

Archive
Tier



Query execution dominated by scan bandwidth
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Source: http://www.qdpma.com/tpch/TPCH100_Query_plans.html

Scan and seek cost relative 
to total query cost

Number of 
TPCH 

queries
<20% 0

20%-40% 2
40%-60% 4
60%-80% 7
80%-100% 9

Most queries dominated 
by scan and seek cost

TPCH Query 12
87% of total cost at the leaf of

the query plan
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The Bandwidth Mismatch
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BiCS5

128 NAND Dies

BW
128GB/s

Mem 
PackageBW

64GB/s

16 packages

FM

1 FM

BW
8GB/s

FE

1 FE

BW 
7GB/s

Storage
Interface

I/O
Interface

BW
6.4GB/s

eSSD Controller

Data trickles out
to host



Possible Placements of Compute Cores in iMemory

di e

cores

FTL ECC

Host CPUs Managed Memory Controller Managed
Memory

Memory
bus

I/O
bus

Conventional placement of compute cores
Core integrated with controller

Benefit
• $/perf and W/perf 

• Greater bandwidth 
and lower latency 
between a 
computation and its 
data 

Challenge
• Lack of ECC and 

possibly FTL 
functionality

Core integrated in die or package

16-Sep-17
27



Challenges of Core Placement in SSDs
Exploiting memory bandwidth requires rethinking memory management

September 16, 
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Physical addressing only

Uncorrected memory

Cost, power and fab friendliness
No direct access to DRAM

Front	End	
(FE)

Flash	Manager	
(FM)

Interposer
I/O

Interface

Inter	chip
Interface

Compute	Cores
SSD	Controller

NVM	Interface
NVM	Package(s)

Lowest	
Bandwidth

Highest	
Bandwidth

DRAM
NVM	die



Cores near memory
How many cores?
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Need low gate count, cache-less cores 
tuned for data-intensive workloads

Scan bandwidth 130 GB/s
Average record size 1000 B
Record scan bandwidth 130 M records/s
Computation (Instr/Record) 10 100 1000
Total processing power 
required (MIPS)

1300 13000 130000

Processing power per core 800 MIPS (say)
# of cores 1.6 16.2 162.5

Another metric
MIPS/Scan bandwidth -> Processing power required per unit of available scan bandwidth
For example, in the case above, the system requires 10, 100 or 1000 MIPS per GB/s



iMemory Architecture

•Fast Read Path: 
– Judicious core placements enable iMemory to exploit internal read bandwidth and provide 

order of magnitude processing bandwidth.
– iMemory exposes cores, translations, and data placement via APIs to database optimizers.

•Auto targeting and Just-In-Time (JIT) enabled data-layer optimizers
– Generated (not handwritten) code efficiently targets 10s-100s of DPU cores in iMemory.
– JIT compilation improves system efficiency with optimal targeting of iMemory.

•Application aware ECC to enable high throughput decoding
– ECC engine aware of logical and physical database schemata (record size, column count and 

sizes, row or column order).
– Decoder informed on a query-by-query basis about table fields used, projected or ignored.

Achieving 100GB/s processing rate



Scan Bandwidth
The road to 32.5 GB/s per TB

Cores integrated 
within SSD 
controller

Cores integrated 
with memory 

package

Deep 
Integration of 
cores with die 

CuA

31

2019 2020 2022

4 GB/s
per TB

10-12 GB/s
per TB

32.5 GB/s
per TB

iMemory-1 iMemory-2 iMemory-3

16-Sep-17

Key Technology Enablers: Controller enhancement, Packaging, Die Enhancement



iMemory System Software Stack

Database Application

Apache Spark

Flash-Optimized Storage Engine

iMemory Runtime Library

iMemory DPU 

iMemory Cost Model

SQL Query

Scala code

Optimized C code

Host CPU

Host code DPU code

Host
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Aligning with
Industry and Academic Initiatives



Analytics Infrastructure Scaling Trends

UP
Scaling

Scaling 

OUT
Scaling

IN

If it does not scale, it will fail

Driven by limited scale-out of 
Oracle RAC and even Hana for 
handling transactions and mixed 
workloads

From analytics under add as you 
grow Hadoop instances and more 
iron at Spark, now transactions in 
Spanner, Cockroach

Scaling out without sprawling out. 
e.g.,
• RackOut (SoCC’16) uses 

RDMA  to disaggregated data 
shared within rack.

• HPC and ML, memcache, etc. 
benefit 36-88% from using 
fewer nodes with MORE 
MEMORY



Scaling Down

UP
Scaling

Scaling 

OUT
Scaling

DN

an attractive alternative

• Makes sense for lightweight compute and 
moderate to high bandwidths
– Key-Value Stores, for instance!

• Delivers best cost when integrated with 
semiconductor memories such as flash 
and perhaps SCM

• Integrated with SCM, it could give GPUs, 
FPGAs, and von Neumann configurations 
with big memory a run for the money
– HANA and IMDBs, for instance

• REQUIRES
– Investment in optimizers
– Low power, low cost interconnects
– Silicon integration of cores with memory

35

SCM

x86 FE

NoC / 
C2C 

switch

DSP ARM Risc-V

FM

PCIe FM



Anthropomorphic Workloads

9/16/17 36

Compute to Memory
Memory to Compute

Hard: Logic and memory on same die
Hard: Cores routable using 3-4 metal layers

Lack of killer apps and optimization ecosystem

PIM cores

Optimizers, JIT compilers, x-compilers



DATA GRAVITY

§ How we process ML training

§ Feed the hungry GPUs

37

Also applies to data versus data

§ How we should process ML training

M
B

TB

TB

M
B



Optimizing Data Placement

• Pressures to get to even lower power
– Long tail of extreme personalization + Privacy concerns/laws ⇒ Learning in the field
– Evolving world requires always (online) learning algorithms

• Pressures to get to even higher performance
– Ad hoc queries against petabytes of data in real time (this talk)
– Long standing queries (context aware computing)
– HTAP (Ananlytics and context mediated transactions)

• Compilers and runtimes do not even recognize this as a problem yet
– Yet, leaders in industry and academia believe this is one of the most important problems

• E.g. carefully placing matrices and vectors in such a way that dot products, 
matvecs, gemms, and tensor products can be computed w/o data movement

• Now, add memristive logic

38

A key optimization to develop 3-5 years out



THE ULTIMATE QUESTION BEFORE COMPUTER ARCHITECTS

Compute

that

remembers

39

Is this also the von Neumann vs non-von-Neumann question?

Memory

that

computes

© Sören Boyn / CNRS/Thales physics joint research unit.
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