

Open-Silicon.com

490 N. McCarthy Blvd, #220 Milpitas, CA 95035 408-240-5700

High Volume Manufacturing Supply Chain Ecosystem for 2.5D HBM2 ASIC SiPs

© Open-Silicon, Inc.

Open-Silicon

© Open-Silicon, Inc.

2

The Need for 2.5D Integration with HBM (High Bandwidth Memories)

Why 2.5D Has a Future → Memory Wall

- CPU performance is increasing 4x-8x compared to memory performance (processor can be idle for 50-75% idle times)
- Power is a big issue
 - wide-IO to reduce frequency \rightarrow lower power
- IO space is limited → Integrate to reduce size
 - Memory cannot become wider
- Faster data
 - USB, PCIe, SATA, all are faster now
 - Multiple interfaces vie for same DRAM
 - Larger on-chip storage is needed (video/graphics is the biggest contributor)

High Bandwidth Memory IP

- In-house design (Controller/PHY/IO)
- Leveraging 2.5D die2die "channel" experience from Avatar
- e.g. on Interposer interconnect electricals, ESD, DfT, etc.
- CMOS IO driver, 1GHz/2Gbps DDR with light output loading
- Electrically compatible with JEDEC HBM2 DRAM spec
- TSMC 16nm implementation

© Open-Silicon, Inc.

3

HBM Applications & Comparison

Data Centers

Artificial Intelligence

Networking

AR and VR

	DDR4	GDDR5	HBM2
Bus Width (per chip)	16-bit	32-bit	1024-bit
Clock Speed	3.2Gbps	7Gbps	2.0Gbps
Bandwidth (per chip)	6.4Gbytes	28Gbytes	256Gbytes
Power Efficiency (Gbits per sec/pin)	1mW	-	0.33mW
Voltage	1.2V	1.35V, 1.5V	1.2V
Package Type	Discrete	Discrete	Si-Interposer

Major Advantages of 2.5D + HBM

High Performance/Bandwidth

 Accelerate memory access, reduce processor idle times

Lower Power

- HBM uses wide IO's that clock at lower frequencies and result in lower power consumption (~40% reduction)
- 2.5D memory placement is very close the core die (~70um vs. 2 cm. on a PCB)
- → Smaller IO drivers are needed which reduce IO power

Smaller Footprint due to integration / high packing density

- <50um micro-bump pitch for HBM memories can be accommodated on the silicon interposer providing high routing density (>5000 ubumps)
- Substantially smaller than DDR4/GDDR5
- Capable of signaling up to 2Gbps DDR between 4-5mm trace lengths

© Open-Silicon, Inc.

5

2.5D System

•Mounting 2 or more Silicon DIEs onto an Interface DIE. •Assembling the whole system into a single package.

2.5D System for High Performance Computing, Graphics, Network Applications

2.5D Systems Enable

- •Cost Reduction
- •Lower Area
- •Higher Bandwidth
- •Lower Power
- •Improved Yield due to Lower Area
- •Heterogenous Integration etc

DIE2 Al pad layer DIE1 Micro bump Micro bump pad layer Interface Back-side **INTERFACE DIE** routing bumps TSV PACKAGE SUBSTRATE Package bumps **Open-Silicon** Providing System-Optimized ASIC Solutions Your Idea. Delivered.™

Avatar 2.5D Solution Demonstration

First ASIC vendor to bring 2.5D to prototype silicon (Avatar). Awarded best chip design at ARM TechCon 2013, Santa Clara

Components & Stakeholders Involved

HBM2 Memory

	4H HBM	1 DIE
Stacked DRAM with a base die		4 HBM dies with 2 channels per DIE
4H, 8H stack options		
Up to 8GB memory density	Channel C	G Channel H
8 independent channels to interface		
Wide interface architecture for low power and high speed operation		
Each channel has 128b data bus		Buffer/Base DIE
IO voltage is 1.2V	8H HBM	DIE
Unterminated data/address/cmd/clk interfaces		2 X 4HBM dies with 2
DRAM core voltage is 1.2V independent of IO voltage		channels per DIE
Base die has micro-bumps to connect to interface	Channel G	Channel H
~ 700 um high		
HBM2 targets 2Gbps data rates and higher		
256 GBps bandwidth possible with 8H HBM2		
		Buffer/Base DIE
© Open-Silicon, Inc. 9 Providing System-Optin	nized ASIC Solutions	Your Idea. Delivered.™

ASIC Die: HBM2 Specific 2.5D System Connections

ASIC Die and Interposer: 2.5D Requirements: Bump Design

2.5D Package Assembly Flow (Typical)

- Interposer Manufacture
 - Fab, 65nm process
 - Additional TSV processes
- Interposer Preparation
 - Backgrind to 75-100um
 - Additional temporary bonding/de-bonding processes for carrier
- Package Assembly
 - Interposer attach to substrate
 - Die(s) attach to interposer
 - ✓ 40-60um pitch

2.5D System: Test / Fault Coverage Challenges

Low DPPM - >> Low System Level Fallout is Essential for Expensive Systems

Test Coverage / KGD Plan for High System Yield/Low DPPM

ASIC Die	 High speed probe testing (sacrificial probe test pads) Direct dock testing (at-speed) DFT with 98%+ fault coverage
Interposer	 Test structures Physical – Wafer coplanarity, optical surface inspections, TSV depth Electrical – TSV leakage, metal pattern, via chain tests
HBM Memory	 KGD + wafer level burn-in (supplier proprietary) IEEE debug bus access
Substrate	 Electrical tests Optical inspections
© Open-Silicon, Inc. 14	Providing System-Optimized ASIC Solutions

2.5D Test Flow

Open-Silicon's Probing Scheme for 2.5D HBM2 ASIC SiP

Substrate

Testability feature deployed through probing mechanism for debug of ASIC SiPs with HBM memory embedded on a 2.5D interposer die

© Open-Silicon, Inc.

2.5D HBM2 ASIC SiP Validation/Evaluation Platform

Reference Board Design

Open-Silicon's 2.5D HBM2 ASIC SiP for Silicon Validation Parameters

Full Turnkey HBM2-Based 2.5D System Solution

2.5D HBM2 SiP Implementation Challenges

2.5D HBM2 SiP Manufacturing Challenges

 Microbum Interposers e reticle size Reliabil Cost 	ping, exceeding e (XL) lity	 Interposer Keep of Optimize meta Integrate Test struct 	Foundries costs low number of l layers e passives ctures/DFT	•Low ESD •Wafer leve tech •Large stac reli •C	SATS environment el processing nniques cked package iability Costs	Se IP H Standard. • New ac requireme E • new	emi's louses Committees Iditions and ents (D2D IOs ESD) y players
	KGD Ver • Standards suppliers on delivery r • Heteroge integra	ndors s across n test/DFT, metrics eneous ation	DFT • Probing r • Testing of differe • High-spen probe (of	Trest microbumps out at many ent levels ed testing at direct dock)	EI • Integra connecting interpose subs	DA ted tools g core die to er, package strates	

© Open-Silicon, Inc.

21

Building the Ecosystem

Open-Silicon 2.5D and HBM2 Programs *Proven Capability Across Foundries and OSATs*

Summary

Multi die Integration for high performance ASICs is necessary We have hit the memory wall

2.5D Integration of SoC with HBM memory is silicon proven

Result is major improvement in performance, lowering of power and reduced footprint

Silicon-proven HBM2 IP subsystem, design/manufacturing of HBM2 ASIC SiPs from a single vendor *Lowers risk and time-to-market*

HBM ecosystem is ready for high volume manufacturing of HBM2 ASIC SiPs

()	50	Icon	
UL.	- C	IUUII.	

THANK YOU

