Compositional Synthesis for High-
level Design of System-Chips

A Personal Journey in HW-SW Co-Design

Rajesh K. Gupta
University of California, San Diego
INRIA International Chair.

MESL . UCSD . EDU

“Hardware” acceleration is no
longer a choice, it is inevitable

/R

L/

¢ SOC is an inevitable destination for
Implementation in:

= implanted, mobile, desktop, cloud, ...systems
= >100X more efficient GOPS/W, $$/part

Image Processing Multimedia Machine Learning Web Search Big Data Analytics

e)

Deep Learnlng V01ce Llnear Algebra Graphlcs 5

Recoonition

/R

Outline

L/

¢+ Component composition beginnings
» Synthesizability in reducing cost of design

¢ SOC architectural design for composition:

m a tiered accelerator fabric in reducing time to design

m designed to span the range from energy efficiency to
flexibility

¢ Putting design & tools together for a new
methodology

s The Celerity chip.

“High-Level”: A personal journey

/R

L/

¢ Life as circuit designer at Intel c. 1986 was ‘simple’
= Simulation tool reproduced hardware behavior faithfully
= Circuits hooked together: modularity and abstraction

= Designer design automation focused on methodological
iInnovations (split runs, timing calculators, sanity checks)

= Real simple handoff (of printed C-size sheets)
= Local verifiability and updates through back annotations

¢ Then things changed

= Design became data, and data exploded
= Programming paradigm percolated down to RTL
s Designers opened up to letting go of the clock boundary

¢ HDL = HLL + Concurrency+Timing+Reactivity+Structure
= HardwareC, Radha-Ratan, Scenic = SystemC, BALBOA ’

From HLL to HDL: Semantic Needs

{ Concurrency O/ \b
» model hardware parallelism, multiple clocks
i Timing Determinism —

m provide a “predictable” simulation behavior

Reactive programming

m provide mechanism to model non-terminating interaction
with other components, watching, waiting, exceptions

Structural Abstraction

m provide a mechanism for building larger systems by
composing smaller ones

SOC=CO-DESIGN

An Algorithm for Synthesis of System-Level Interface Circuits

Ki-Seok Chung

Rajesh K. Gupta

*

C. L. Liu

Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana, IL 61801

Abstract
We describe an algorithm for the synthesis and opti-
mization of interface circuits for embedded system com-
ponents such as microprocessors, memory ASIC, and
network subsystems with fized interfaces. The algorithm

There are several ways to connect the two chips in Figure 1-
(a). We show two different ways in Figure 1-(b) and 1-(c).
The costs of the interface circuits, however, are different in
the two cases. One way to quantify the cost is to examine
the number of signal transitions as it is directly related to
power consumption in current technology.

Timing Diagram
&

Protocol FlowChart
Parameter Table

P 4

‘ Specification & Requirement ’

Signal Transition Graph

Type 1 & Type 2
Connections

Discrete Representation/Composition

Type 3 Connections

accepts the timing characteristics of two system com-
ponents as input, and generates a combinational inter-
face (glue logic) circuit. The algorithm consists of two
parts. In the first part, we determine the direct pin-to-

P

Also in Figure 1-(c), we can see that the ASx signal is
used to drive three input pins. Such sharing of output signal Flgure 3: Overview of the interface SyntheSIS algorlthm.
by as many input pins as possible typically results in area

minimization in the interface circuit, reducing the number of

MCE350 ACTA INTEL 808542 INTEL $2314 VoD
 — INTEL 80186 [INTEL 82530
o) ADDR
20 Astart DaTA B ADDR ame
start x- Y- z+ X+ Y+ T " o DATA e—————={ para DATS o
I I I l [\ T
| 1 1 1 [\\ - AIE _Do» ot NT -—oq-— T
X I | 1 1 /10 o L 9 —
A 1 wE INTA INTA
| max 20 | | | \ crs oMt READY
== ==| | | | | \ 100 RQ PCS* cs*
: hin 10 'min 50 ! ! (+ k &) * U
1 'Pi:n: = oin L= y+ \\ RD* | RD
WE
v Al—fj'\ ! ! /'ﬁ 10 \ s o 1= e
\
RD* R0)
| | | I - \ e b— m
! ! ! ! Il L3 A e VDD . o
I I I | b : IR
| [[/ [. SRDY RDY
z t T T l [D R
o Procesor S
| max 100 | o _min 10 ’
™= T | I =1 —= min constramt
I I I | max 20 | | (a) (b) (<)
| | | | | |

———->=> max constraint

Figure 5: Interfaces generated by SYNTERFACE for
(a) MC6850 ACIA & MC68000 (b) INTEL 8085AH-2 &

Figure 2: A timing diagram and an equivalent signal
INTEL 8231 (c) INTEL 80186 & INTEL 82530.

transition graph

Balboa: Structural
Composition of IP Blocks

s model blocks

m set parameters

¢ Module as a top-level class
¢ Member functions:

m create compound blocks
m connect component objects

¢ A glorified schematic entry
> set design [new Module]
> set CO [$design Component]
> $design connect C0 C1
> $design attach_list
> $design copy_interface

> $design attach_behavior
= oo

Building a CCF

/R

+ Define compositional semantics across models of
computation (MOCs)
= enable easy system construction and its “formal” validation
s “adequate”, hierarchical and verifiable composition

s Create “Virtual” System Architectures

¢+ Can be done through

m Polymorphic interfaces and mixed compiled and interpreted
programming components

» Incorporating capabilities in the design technology for reflection and
introspection

+ Use type system for correctness
s Capture “behavioral types” and model checking obligations

* Primary obstacle to composability

m Semantic gap between silicon IP and their software models 8

Compositional Semantic Gap

N

L/

Hardware elements:

mm

Software models:

\

sc_1n<int>
sc_1n<cData>
Port<char>
Protocol<event>
B2* b2 ptr;

Int write(int);

How to
connect?

Balboa CC: Key Technical
Decisions

/R

m Functionality: describe & synthesize

m Structure: capture & simulate

L/
* Alayered development and runtime environment

)

A —~—

System designer

Component

Integration, CIL

Split-Level

Interface/BIDL

¢+ Use an interpreted language for ;é.;
m Architecture description —
s Component integration %
* Use compiled models for -
m behavioral description, simulation A
¢ Automatically link the two domains %
= through a “split-level” interface 2.
¢ Automatic code “wrapper” generation a.

= for component reuse.

10

System designer

Component
Integration, CIL

pajordioyuy

/R

2

Language Layer: Compiled

Component Implementation in C++
¢ To execute the modeled behavior

Can use object structure to replicate modeled
structures

¢ Use modeling class library (in SystemC, C++) for

Split-Level
Interface/BIDL

[dwo)

i

Concurrency

Bit-level data types

Model of time (variants, BFM, ISS etc.)
Model of structure

OS, Middleware services, abstractions

¢ Components are implemented by a component library
designer, modeling plus C++ programming

11

/R

¢ Script-like language
based on Object Tcl

¢ Compose an architecture

m [nstantiate components

m Connect components
m Compose objects
m Build test benches

¢ Introspection

m Query its own structure
¢ Loose typing

m Strings and numbers

Language Layers: CIL

é; Systgm_dasjge
@ Component
a\ Integration, CIL
— M
o Split-Level
g_ Interface/BIDL

Producer P - @

Consumer C

Queue Q

P query attributes

=>queue_out

C query attributes

=queue in

P.queue out query methods
=bind to read

P.queue out bind to Q

12

Language Layers: BIDL

/R

2

*

Describe the component for usage with
the CIL

Exports the interface and internals

details:
= Attributes
= Methods
= Relationships
= Non-functional properties

Configure a Split-Level Interface (SLI)

= A custom wrapper for manipulation of the C++
compiled object by the CIL

Generate the Type System Extensions
m For the CIL introspection and type inference

(Defines the “meta-level” for reflection)

System designer

Component
Integration, CIL

| Paadioru]

|

Split-Level
Interface/BIDL |
N 1
v

peu%

template<class T>
class Producer {
kind BEHAVIORAL;
public:
Queue<T>* queue out;
unsigned int packet count;
void packet generator process();

55

INSTANCE (int)

OF CLASS (Producer)
INSTANCE (BigPacket)

OF CLASS (Producer)
INSTANCE (SmallPacket)

OF CLASS (Producer)

LE®}

Internal Component Architecture

CIL Commands
Y Y
Split Interpreted OTcl
level class with variables
Interface and methods
A /
Type
Adapter
Bridge
Y
Type Internal
system compiled
information object

>
C++ Objects

Interactions

14

Internal Component Architecture

CIL Commands

Split Interpreted OTcl
level class with variables

/R
Y

and methods

¢+ Split-level interface
m Link between interpreted and compiled domain

—
C++ Objects

Interactions

m Abstracts and manage the underlying C++ object

= Implements heuristic for type inference

= Maintains type checking for correct by construction validation

m Implement the composition model, introspection & reflection
¢ Type adapter bridge

m Provides a proxy to the internal C++ object

= Specific for each C++ type
m Generated by the BIDL

¢ Type system information
m Specific to the C++ class, generated by the BIDL

¢ Interpreted variables and methods
m The system architect can add interpreted parts to the component

15

/R

Type System

¢ Compiled types are “weakened” in the CIL
m Data types are abstracted from signal and ports

+ Algorithm for data type inference
m [f a component is not typed in the CIL

+ The SLI delays the instantiation of the compiled internal object
+ Interpreted parts of the component are accessible

m Verify if types are compatible when a relationship 1s set

+ If a compatible type is found, the SLI allocates the internal
object and sets the relationship

+ If not, the link command is delayed until the types are solved

% To understand this inferencing, let us look at typing...
16

Type System and Introspection

/R

L/

*

*

Fundamental purpose
Static error checking in program composition

But, it can also support various “type abstractions”

ML:
Tcl/Perl:
C++:

assign types to functions and variable

every variable is a string, convert to number 1f needed

dispatch virtual methods

/

~

Type System and Introspection

/R

L/

¢ Fundamental purpose
m Static error checking in program composition

¢ But, it can also support various “type abstractions”

= ML: assign types to functions and variable
s Tcl/Perl: every variable is a string, convert to number 1f needed
m Ct++: dispatch virtual methods

¢+ BALBOA Type system created with reification
m Enables type inference
m Enables checking of compositional correctness

¢+ Automatic inspection of type composition through
Introspection
- Data type checks
o Protocol match checks
m Adapter synthesis

An adder: P,

P4

P, C

/R

Ps

P3

IS polymorphic because its ports can
have many type mappings:

X int X bool
ports(c,) :bv8 X bv8 X bool
ports(c;) : bvi6 X bvié X bool

X int X bool
X bv8 X bool
X bvié X bool

ports(c,) : int

The dt, mapping function has 3 choice
In assigning the ports to compiled types!

Mapping can be viewed as an IP selection

int

int

bool

bv<8>

bv<8>

bool

bv<16>

bv<1l6>

bool

int

bool

bv<8>

bool

bv<16>

bool

19

Subtyping & Software Components

/R

JSubstitutabiIity (polymorphism):

int

int

bool

—

int

bool

bv<8>

bv<8>
bool

Process ()

—

If we replace A by B in the system, will correctness be maintained?
(may be a different abstraction, language, required environment)

bv<8>

bool

Callback<T* () >

=>Problem gets complex as the notion of substitutability is enhanced.

20

Subtyping Relations

&
General
&
String
Object Boolean Num
Fix Long Complex

-
Double

Int

/
Char

UNKNOWN

Lattice ordering for subtyping
and conversion relation

= Value subset semantics
(range restriction)

m Char < Int < Long < Num

Goal: infer the most general
type that will allow a program
to be correct

m Exact static match
m Lossless run-time conversion

21

System designer

)
[¢]
% Component
T S t i B I I & | Integration, CIL
y I y 2 Split-Level
/] g Interface/BIDL

Pal

" Semi-lattice type relationship:

s NP-hard to find a match for a netlist
+ Set P of ports partitioned into k sets (component)

C++, SystemC

+ Set S of signals
+ For each component, with its port vector p, assign a Component
row from the TAT table such that if there is a signal set
is compatible.
+ (One-in-Three Mono 3SAT can be reduced to Type I
Inference) .
= Full type resolution i1s not guaranteed Type parameters build
) ..) the type availability table
¢ Solved as a constrained optimization problem
m [fa component is not typed in the CIL
+ The SLI delays the instantiation of the compiled internal
object

+ Interpreted parts of the component are accessible
m Verify if types are compatible when a relationship is set

: . 1 In Out Out

+ If a compatible type is found, the SLI allocates the —_
internal object and sets the relationship int8 | int8 | int8 | bool

+ If not, the link command is delayed until the types are DM TN LT
solved

int64 | int64 | int64 bool

bool [bool | bool bool

Reference: TCAD, Dec 2003 e

DARPA

2015: ENTER DARPA

"What can we do to reduce design
time by 100 weeks? “

1.41) CERTUS: SPEEDING UP SOC DESIGN BY 5X

Physical Physical Physical
implementation implementation implementation
cycle #1 cycle #2 cycle #3
Initial RTL Floorplan, RTL, constraint tuning, and RTL/FP tuning, RTL tuning,
creation physical synthesis re-synthesis re-synthesis
1 1 1 1 1 1 1 1 1 1 | 1 1 1 I 1 \ 1 1 1 1 1 | 1 1 I 1 1 1
|]]]] 1 1 1 1 1 | 1 1 1 | | 1 1 1 1 1 | 1 1 | I I 1
0 T A T A , . Lo Lo
o toror b r ot iStandard cell design flow | I ||
N e e R N O . o
8 16 24 32 40 48 56 64 72 |80 88| 96| 104 112|120 128 136|144 152
< : — — € — : >
RTL coding, FRGA Verification, software co-verification Full chip integratioh: IPs and 10s
" <€ >
H%* | | Clock generator synthesis, dc/dc qonversion
, —>< —- >
,, TrialP&R ~ Floorplan/RTL/constraints tuning, Timing
. - time equivialence checking| timing ECO closure
Regularity Deep Pipelining) . Blurred handoff
: | 130-wegk implementation for advanced nodeldesign > isk of respir}
Comppsition // —v————GQS—mﬂ—i
e I TN
I I W e) S e .
1 1 1 1 Dol = Il Bl | =0 . |
O I I W D i O
Pl I .
(" -
] 10 o0l u
5 7 1 ¢ 3 0 0 B |
Python 24 32 weeks Physical design, timing closure,
signoff criteria, multiphysics analyses

Front-end design

(16 weeks)

<

pg design (8 wee
—>

30-week implementation

Physical] implementation (10 weeks)

weeks

D’AR PA Team IED

= Three functional groups: “Architecture”, “Synthesis & Optimization”, “SOC/
circuits”.

Each of these groups has direct interface to relevant external community (RISC V
SIG, MOSIS, NGAS)

Architectural Design and Optimization

RISCV, IP
Community

Synthesis and Optimization
Methods

s0C _— SOC/Circuits

Accelerator

Manufacturing
Interface

25

@ Several key innovations, no silver bullet

1: Start with an architectural template that provides for three key MOCs
(MPU, GPU, FPGA)

General-purpose computations (OS, 10 etc); exploit parallelism at coarse- and
fine-grain and provide for custom accelerators.

2: Component Composition Framework (PyMTL)

Capability to rapidly compose and verify different languages (Python,
SystemVerilog, System C) at different levels of abstraction (untimed, cycle
approx., cycle accurate).

3: Regularizing High-level Synthesis (HLS)

Capability to take brand new application and produce accelerator in 12 weeks
with rapid design exploration. ROCC interface and RSP programming model.
4: Backend Design and Verification Flow

Low-complexity, well-structured, rapidly portable, RTL-to-GDS plus analog and
hierarchical flow.

Approach: Compartmentalized, fully scripted hierarchy flow for parallel
iteration toward timing closure and verification.

@ Several key innovations, no silver bullet

5: Standard Template Library (STL) of IP Blocks

Capability: rapid development of traditional (non-HLS) architectural blocks
using extremely heterogeneous composability through latency-insensitive
interfaces, highly parameterized, standardized containers and components,
representing all major HW design building blocks, large and small.

Support for regression testing that ensure that component changes do not
break components with dependencies

6: Fully synthesizable PLL and LDO analog blocks

100% std cell design and APR; easy to port. Use time as analog values instead
of RLC's or charge. Achieved industry competitive metrics.

Highly scalable and rapidly deployable/portable digital LDO architecture due
to digital PD control. Uses minimal number of custom cells. 16nm tapeout
outperforms all other digital LDOs and analog LDOs.

DPA CELERITY: Probably the single biggest

advance of the RISC-V Ecosystem

= Atiered parallel accelerator fabric that enables decomposition of tasks
according to control, communications and memorv needs _

* Control-plane Tier with Five RISC-V Lin
image of Linux

= Cores used for general purpose contrc

* Data-plane Tier optimized for minimur [V EEEEs Control I
" 496-core (31x16 RISC-V tiled) manycor [EEQECIUIT 3 Plane Plane

Tier Tier || Tier

e Acceleration-plane Tier that is conneci |

= Dataplane can stream words to accele » » »
= BNN obviates need for dedicated SRAI Parallel Links Between Every Tier
programmable stream buffer g d i

= Manycore deploys remote-store programfr"iimhg‘ where the tiles can do word
writes to other tiles” memory spaces thus enabling stream programming
e Out performs MIT RAW and Tilera with far less buffer space and unlimited deadlock
free channels between tiles (10X more dense than RAW)

= Adaptive and response dynamic power management through 2x5 manycore
array that provides housekeeping DVFS functions.

= Deploys a tiered memory system as well that supports direct access and DMA

CELERITY CHIP OVERVIEW

N
s e
)
|

TSMC 16nm FinFET, 25 mm?Z, ~360 million transistors)|
511 RISC-V Cores e

scalar processor, DP floating point, 16 KB 4-way each I-cache and D-cache,
RG64G ISA, 0.97 mm? per core @625MHz

* 496 core mesh tiled array “Manycore”, distributed memory model, 4KB each
instruction and data memory. RV32IM ISA, 80 Gbps duplex adjacent links,
0.024 mm? @1.05 GHz

* 10 core mesh tiled array “Manycore” (low voltage) ég
1 Binarized Neural Network Accelerator, 0.356 mm? ?E
* 13.4 MB model size with 9 layers g
On-chip synthesizable PLLs and DC/DC LDO :

3 Clock Domains
* 400 MHz—DDRO
* 625 MHz — Rocket Core + BNN Accelerator
* 1.05 GHz— Manycore Array

672-pin flip-chip BGA package

9-month from PDK access to tapeout.

RN

-+ (][]

M :..

[[(v
ol B Y (Y

m] Router ¢

DAhPA Manycore Array

XY-dimension network-on-chip (NOC)
Unlimited deadlock-free communications

Remote Store Programming Model
* Word writes into other tile’s data memory

32 bits/cycle input
32 bits/cycle output

* Off-chip communication uses same network

* MIMD programming
= Fine grain parallelism through high-speed

communication between tiles | | g

: . Feedback 2| 2| 8| B

Token-queue architectural primitive LL“J 8| 8 4§ g
* Reserves buffer space in remote core Input _—’E\ Output [%] [g] [%] @
o ’—>E| Split Join —> = 81 8] &

* Ensures buffer is filled before accessed E|_,§/' = I I
Pipeline 8" 8" 8" 8,

e Tight producer-consumer synchronization

* Streaming programming model supporting Stream Programming SPMD Programming
producer-consumer parallelism

CELERITY

UNIVERSITY OF
MICHIGAN

TSmOy HON
L

EJlE]

BNN

10-core

L

Synthesizable
DC/DCs

Synthesizable
PLLs

Basejump
Motherboard

@ Towards Highly Productive Hardware Specialization

Quality of Results (Qog)

. . RTL ' , High-Level ____
Descriptions : Programs

Manual HDLs | Goal: Architect-Accessible
l High- lity HL

) ax | igh-Quality HLS

Efficiency gap

C-to-lgates
: ~10-20X
ﬂ Productivity gap). Python
Ease of- Use

@ Cross-layer optimizations

@ Regularization synthesis

@ Automated refinement checking

(@) Agile compositional methods

DARPA Compositional Synthesis Toolflow

Design flow
= Source-to-source transformation

to generate optimized C++ or
SystemC specification

* Build on LLVM compiler
infrastructure

CERTUS

HLS

* Leverage commercial HLS tools XFORMS

= Vivado HLS for FPGA

Optimized R |
prototyping

CERTUS
HLS

= Cadence C-to-Silicon Compiler
Code Gen

for ASIC implementation

LM

Technology used

Cross-layer

feedback

c/C HLS Tool J
++
— LLVM Pattern R Pattern/Re.source =l
Code Detection Selection)
TL design
Synthesized ‘Modified Code
Code +| HLS tool ~C/C++ Code| Transformation SCTE

L Commercial

Flow

CERTUS HLS
framework
based on

open-source
LLVM

compiler

infrastructure

Commercial
CAD toolflow

Innovation #1: Cross-Layer Synthesis Optimizations

= Uncover optimization opportunities by looking across abstraction layers

* Address the interdependence between HLS
and low-level synthesis

* Intelligent sampling in queries to downstream tools

HLS

> Input is high-level CDFG containing
cycles, user timing constraints, multi-
bit values, and complex ops

» The actual hardware (control logic,
elc.) has yet to be generated

< 1r

RTL/logic synthesis

» Part of RTL2GDS flow

» Input is a low-level netlist with fixed
register boundaries, single-bit values,
and simple logic ops

g2 3 i4 i5

— Cycle 0
o
2ns
. O3

AT Cycle 1

Q

Conventional HLS : 2-cycle latency

il @2 i3 4 g5
T_.9°%

Cycle 0

oo

Cycle 1

Considers tech mapping :
1 cycle (combinational)

DA‘RPA Innovation #2: Regularizing Synthesis

Regular structures can reduce the size of design task and optimize QOR
Regularity can be in function (similarity of operations), structure (similarity

of connections) or topological (similarity of placement). Degree of regularity.

HDL description

v

Macro
library

Arithmetic operator
expansion

v (Boolean)

Functional-regularity
extraction

Cell library

Data path

|

logic templates
Y

Cell selection

Structural-regularity
extraction

’
,
‘/

Data path logic » R

Data path
circuit templates

Sized
\ circuit
templates

foa

Cell size

Data path
schematic
hierarchy

Y Y)

selection

Schematic editor

Data
path
floorplan

R

c0] bl0] al0] cll] bl all] bRl a2l b3l ald)

MODULE Example

Inputs a[% 0] b[3:0], c[3:0]. s0;
Clock clk

Outputs x[1:0], y[3:0]; clk 1 T 1 a !

begin main ’ ‘ ‘ ‘ -

fm{'i =0to3do L | L | 5 ‘ Y
SH i{;m gi?sifg]élk; 0 T C_'_l/ sl C_,_l/ s1 ?_,_]/ s1 jo_,_l/ st
y[i] :=if sO then ef[i] pe . . T

else b[i]:
)
fori=0to 1 do

f[i] = c[i] OR y[i];
x[i] = fTi] on rising clk;

end main;

- . ym ym
S3 S3

0] y10) X oy

Fig. 1. HDL description of a circuit, whose regularity can be defined in terms of S1. 52, and S3. One cover is formed by four instances of S1 and
two of 52, while an alternate cover is formed by two instances of S1 and two of S3.

Object dimensioning
Placement

C2
“ Signal planning

egularity extraction

O,

N ;
AN HDL coding

C3

AN
N\
N\

Floorplan editor

C4
D Technology targettng

E\

¥

th I:I v
Syntheszs

DARPA ' hecki
- Innov Sudipta Kundu .hecking

Sorin Lerner
= Specification = Rajesh K. Gupta

=> They have the ¢

instructions.

= Visible instruct 1ts.

= Two function ¢ 1d the arguments are
the same. Two

returned value H ig h = LQVQ' lobals and the
= Split the progre Ve rlﬁ Catl O n low states

* CF state exp required for the visible

instructions yted theorem prover.
Methods and Tools for work np

The property checker takes a5 Verification of System-Level Designs /S |
Equivalence < Y

input a high-level model and
Checker €

through a repeated process
of checking and correction |
produces a golden reference
model. '
The refinement or the .
equivalent checker takes as
input a specification and a

ination, Percolation,
Wditions, dynamic CSE.

/alker, Candidate Op

implementation and checks ifi . Loop Pipelining
the implementation ; £
preserves certain properties | @ Spnnger

of the specification.

Innovation #4: Agile PyMTL/HLS Composition

PyMTL Modeling Framework | 77 TTTtveeeeeeeee

Test Source Test Sink Golden Results Python Hardware Model
==
/01 U | | 1014 == 101 fron pymtl import *
A] .. VeilncHoanln:
RTL Architecture _def _dnit_(s):

Nearest Neighbor

Y 1 —anin

Digit 0 || Digit1 [25 2 = | Digit 9 ———out_strm V_V': s.out_strm.umsg.
find diff [| find qiff find diff — ‘'out strm V.V ap vld': s.out strm.val,
-3

return "{} > {}".format(.)

Digit 0 training set ... Diqit 9 training set

Simulation Line Trace Simulation Waveform
{ E 2838 ns
| 83: 0003041060800 >
HLS C++ Source \ 2078: # > 1 OO61C2CSBEO0 |OOE142448E00
A} . 002041060800 004081020400
. . . \\ 2160 00061C1860f00> O070E38F1EQ0 00C041870300
void Digitrec(. . \\ 4155: # >2 OOEOC3810E00 007040CDBECD
hls._.j_'tr_eamsdn.gu)_&_dlgl:t_s;tnm \ 4237: 000608181000 >
_hls::stream<bit4>& out _strm \ .
% \ 6232: # >5
N 6314: 000612385000 >
void update_knn(N 8309 >8
. . . \\\
_dlg:.:t_t_es_t_ms_t_\. . T . N
M‘M list [K_CONST] \

“Object Oriented” Compositional
Specification using PyMTL

——

class ProcXcel (Model): PyMTL PyMTL
def init (s, ProcModel, XcelModel): "“?ﬁac? "“?ﬁac?
— — Specification Specification
Interface VRTL SCFL
s.proc_imemreq = OutValRdyBundle (MemRegMsg4B) Verilog RTL SystemC
s.proc_imemresp = InValRdyBundle (MemRespMsg4B)
s.proc_dmemreq = OutValRdyBundle (MemRegMsg4B) Model of FL Model of
s.proc_dmemresp = InValRdyBundle (MemRespMsg4B) RV32IM Procj \VVADD Xcel
s.xcel memreq = OutValRdyBundle (MemRegMsg4B) N g N
s.xcel memresp = InValRdyBundle (MemRespMsg4B)
4 Child models [Pure PyMTL FL Test Memory
S.proc = ProcModel ()

s.xcel = XcelModel()

Processor <-> Memory
s.connect(s.proc_imemredq,
s.connect(s.proc_ imemresp,
s.connect(s.proc_dmemreq,
s.connect(s.proc_ dmemresp,

Processor <-> Xcel
s.connect(s.proc.xcelredq,
s.connect(s.proc.xcelresp,

Xcel <-> Memory
s.connect(s.xcel memreq,
s.connect(s.xcel memresp,

S.proc.imemreq

S.proc.imemresp

S.proc.dmemreq

S.proc.dmemresp

s.xcel.xcelreq

s.xcel.xcelresp

s.xcel.memreq
s.xcel.memresp

PFL

Pure-PyMTL
FL Model
of
RV32IM
Proc

PyMTL
Interface
Specification

[HLS

Generated

Verilog RTL

from HLS

(.

'SR

Pure PyMTL FL Test Memory

——

38

@ Quantifying Results

Extensive tracking of raw design effort data in person-hours at individual
cells, blocks
Goal: 5x reduction in design effort

* bsg comm_link reduction: 21.6X

* Manycore2x10 reduction: 5.5x
Goal: 30-week design time for a 10-person design team on a chip of logic
blocks >200K gates, multiple mixed signal blocks, multiple SRAM blocks, 3™
party IP

e Total project duration: 52 weeks from kickoff

* Total engineering time spent: 12,892 hours or 322 person-weeks

Top-level chip verification time of DRC, LVS: ~1 week
Goal: Design productivity target: 50K gates/engineer-day, 1.0 analog block/
engineer-week

* 71K-377K gates/engineer-day, ~1 week for full PLL.

* 0.71 person-week/day for Clock, 1.5 person-week/day for Power Supply

@ Metrics (Continued)

="CERTUS Design Time
* Manycore 16x31 Array: 377K gates/engineer-day
* Rocket core: 71.5K gates/engineer-day

* BNN accelerator: 12.3 K/gates/engineer-day

= (includes algorithm design, binarization reduces gate count but increases design
time. A fixed-point CNN would be 30-50x larger and take less time)

"Analog blocks: (Clock Generator: 2 blocks; SAR-LDO: 4 blocks)
* Design of the Clock Generator: 1.25 person-weeks; <1 person-week/block
* Prelayout of the Clock Generator: 2 person-weeks; 1 wk/block
» Postlayout verification of the clock generator: ~4 person-weeks; 2wk/block
* Design of DC/DC Power Supply block: 6 person-weeks; 1.5 person-week/block
* Prelayout verification of the power supply: 1.5 person weeks
* Post layout verification of the power supply: 9 person weeks.

Manycore
GeneratorManycore Manycore Coyote BNN

Design Time 376,903 71,511 12,294
Prelayout Verification 5,621 703,553 9,355 3,659
Postlayout Verification 3,822 191,878 54,097 12,806

/R

SUMMARY AND OUTLOOK

L/

* Nearly Three Decades of Computer
Architecture and EDA advances have settled on
a few commonly accepted dictums

» No need for language wars for High-level Design

+ Sophisticated typing and validation tools instead.

* No universally acceptable compute MOC

s From Globally Shared Memory multi-threaded
programming to NUMA models to direct hardware
execution under explicit memory management

+ All three have a role in a realistic machine
* Focus on Reuse, Modularization and
Automation to reduce design time.

Acknowledgements

/R

L/

¢ BALBOA Team
m Jean-Pierre Talpin, INRIA, Sandeep Shukla, IIT Kanpur, Fred Doucet,

Cadence

¢+ SystemC, SPARK, HLV Teams

m Sudipta Kundu, Synopsys, Ali Dasdan, Google, Sumit Gupta, IBM,
Sorin Lerner, Nik Dutt, Alex Nicolau, Nick Saviou

¢ CERTUS Team
= Tutu Ajayi, Khalid Al-Haway, Aporva Amarnath, Steve Dai, Scott
Davidson, Paul Gao, Gai Liu, Atieh Lotfi, Julian Puscar, Anuj Rao,
Austin Rovinski, Loai Salem, Shaolin Xie, Chun Zhao, Ritchie Zhao,
Chris Batten, Ron Dreslinkski, Ian Galton, Patrick Mercier, Mani
Srivastava, Michael Taylor, Zhiru Zhang.

42

