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“Hardware” acceleration is no 
longer a choice, it is inevitable 

w SOC is an inevitable destination for 
implementation in:  
n  implanted, mobile, desktop, cloud, …systems 
n  >100X more efficient GOPS/W, $$/part 
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Image	Processing	 Big	Data	Analy4cs	Mul4media	 Machine	Learning	 Web	Search	

Deep Learning Voice 
Recognition 

Linear Algebra Graphics 

130 weeks, $20M problem 



Outline 

w Component composition beginnings  
n  Synthesizability in reducing cost of design 

w SOC architectural design for composition:  
n  a tiered accelerator fabric in reducing time to design 
n  designed to span the range from energy efficiency to 

flexibility 

w Putting design & tools together for a new 
methodology 
n  The Celerity chip. 3 
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“High-Level”: A personal journey 
w  Life as circuit designer at Intel c. 1986 was ‘simple’ 

n  Simulation tool reproduced hardware behavior faithfully 
n  Circuits hooked together: modularity and abstraction 
n  Designer design automation focused on methodological 

innovations (split runs, timing calculators, sanity checks) 
n  Real simple handoff (of printed C-size sheets) 
n  Local verifiability and updates through back annotations 

w Then things changed 
n  Design became data, and data exploded 
n  Programming paradigm percolated down to RTL 
n  Designers opened up to letting go of the clock boundary 

w  HDL = HLL + Concurrency+Timing+Reactivity+Structure 
n  HardwareC, Radha-Ratan, Scenic à SystemC, BALBOA 
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From HLL to HDL: Semantic Needs 

�  Structural Abstraction  
n  provide a mechanism for building larger systems by 

composing smaller ones 

�  Reactive programming  
n  provide mechanism to model non-terminating interaction 

with other components, watching, waiting, exceptions 

❵  Timing Determinism 
■  provide a “predictable” simulation behavior 

❴  Concurrency 
n  model hardware parallelism, multiple clocks 
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SOC=CO-DESIGN 
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Balboa: Structural 
Composition of IP Blocks 

w  Module as a top-level class  
w  Member functions: 

n  model blocks 
n  create compound blocks 
n  connect component objects 
n  set parameters 

w  A glorified schematic entry 
> set design [new Module] 
> set C0 [$design Component] 
> $design connect C0 C1 
> $design attach_list 
> $design copy_interface 
> $design attach_behavior 
> ... 
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Building a CCF 
w  Define compositional semantics across models of 

computation (MOCs) 
n  enable easy system construction and its “formal” validation 
n  “adequate”, hierarchical and verifiable composition 
n  Create “Virtual” System Architectures 

w  Can be done through 
n  Polymorphic interfaces and mixed compiled and interpreted 

programming components 
n  Incorporating capabilities in the design technology for reflection and 

introspection 

w  Use type system for correctness  
n  Capture “behavioral types” and model checking obligations 

w  Primary obstacle to composability 
n  Semantic gap between silicon IP and their software models 
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Compositional Semantic Gap 

B1 B2 
7 7 

Hardware elements: 

How to  
connect? B1 

sc_in<int>  
sc_in<cData> 
Port<char> 
Protocol<event> 
B2* b2_ptr; 
Int write(int); 
… 

B2 

Software models: 
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Balboa CC: Key Technical 
Decisions 
w  A layered development and runtime environment 

n  Functionality: describe & synthesize 
n  Structure: capture & simulate 

w  Use an interpreted language for  
n  Architecture description  
n  Component integration 

w  Use compiled models for  
n  behavioral description, simulation 

w  Automatically link the two domains 
n  through a “split-level” interface 

w  Automatic code “wrapper” generation  
n  for component reuse. 

Component 
Integration, CIL 

Split-Level  
Interface/BIDL 

C++, SystemC 

System designer 
C

om
piled 

Interpreted 
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Language Layer: Compiled 

Component Implementation in C++ 
w  To execute the modeled behavior 
w  Can use object structure to replicate modeled 

structures 
w  Use modeling class library (in SystemC, C++) for 

n  Concurrency 
n  Bit-level data types 
n  Model of time (variants, BFM, ISS etc.) 
n  Model of structure 
n  OS, Middleware services, abstractions 

w  Components are implemented by a component library 
designer, modeling plus C++ programming 

Component
Integration, CIL

Split-Level 
Interface/BIDL

C++, SystemC

System designer

C
om

piled
Interpreted
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Producer P 
Consumer C 
Queue Q 
 
P query attributes  
⇒ queue_out 
C query attributes 
⇒ queue_in 
 
P.queue_out query methods 
⇒ bind_to read 

P.queue_out bind_to Q 
… 

Language Layers: CIL 
w  Script-like language 

based on Object Tcl 
w  Compose an architecture 

n  Instantiate components 
n  Connect components 
n  Compose objects 
n  Build test benches 

w  Introspection 
n  Query its own structure  

w  Loose typing 
n  Strings and numbers 

Component
Integration, CIL

Split-Level 
Interface/BIDL

C++, SystemC

System designer

C
om

piled
Interpreted
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template<class T> 
class Producer { 
  kind BEHAVIORAL; 
public: 
  Queue<T>* queue_out; 
  unsigned int packet_count; 
  void packet_generator process();   
}; 
 
INSTANCE (int)  

 OF_CLASS (Producer) 
INSTANCE (BigPacket)  

 OF_CLASS (Producer) 
INSTANCE (SmallPacket)  

 OF_CLASS (Producer) 

Language Layers: BIDL 
w  Describe the component for usage with 

the CIL 
w  Exports the interface and internals 

details: 
n  Attributes 
n  Methods 
n  Relationships 
n  Non-functional properties 

w  Configure a Split-Level Interface (SLI)  
n  A custom wrapper for manipulation of the C++ 

compiled object by the CIL 

w  Generate the Type System Extensions 
n  For the CIL introspection and type inference 

w  (Defines the “meta-level” for reflection) 

Component
Integration, CIL

Split-Level 
Interface/BIDL

C++, SystemC

System designer

C
om

piled
Interpreted
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Internal Component Architecture 
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Internal Component Architecture 

w  Split-level interface 
n  Link between interpreted and compiled domain 
n  Abstracts and manage the underlying C++ object 
n  Implements heuristic for type inference  
n  Maintains type checking for correct by construction validation 
n  Implement the composition model, introspection & reflection 

w  Type adapter bridge 
n  Provides a proxy to the internal C++ object 
n  Specific for each C++ type 
n  Generated by the BIDL 

w  Type system information 
n  Specific to the C++ class, generated by the BIDL 

w  Interpreted variables and methods 
n  The system architect can add interpreted parts to the component 
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Type System 
w Compiled types are “weakened” in the CIL 

n  Data types are abstracted from signal and ports 

w Algorithm for data type inference 
n  If a component is not typed in the CIL 

w  The SLI delays the instantiation of the compiled internal object  
w  Interpreted parts of the component are accessible 

n  Verify if types are compatible when a relationship is set 
w  If a compatible type is found, the SLI allocates the internal 

object and sets the relationship 
w  If not, the link command is delayed until the types are solved 

➘ To understand this inferencing, let us look at typing… 
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Type System and Introspection 
w  Fundamental purpose 

n  Static error checking in program composition 
w  But, it can also support various “type abstractions” 

n  ML:   assign types to functions and variable 
n  Tcl/Perl:  every variable is a string, convert to number if needed 
n  C++:   dispatch virtual methods 

w  BALBOA Type system created with reification 
n  Enables type inference 
n  Enables checking of compositional correctness 

w  Automatic inspection of type composition through 
introspection 
➾  Data type checks 
q  Protocol match checks 
n  Adapter synthesis 
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Type System and Introspection 
w  Fundamental purpose 

n  Static error checking in program composition 
w  But, it can also support various “type abstractions” 

n  ML:   assign types to functions and variable 
n  Tcl/Perl:  every variable is a string, convert to number if needed 
n  C++:   dispatch virtual methods 

w  BALBOA Type system created with reification 
n  Enables type inference 
n  Enables checking of compositional correctness 

w  Automatic inspection of type composition through 
introspection 
➾  Data type checks 
q  Protocol match checks 
n  Adapter synthesis 
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p1 

p3 

p2 
p5 

p4 c 

An adder:

is polymorphic because its ports can 
have many type mappings:

int 

int 

bool 

int 

bool 
c1 

ports(c1) : int X int X bool X int X bool

bv<8> 

bv<8> 

bool 

bv<8> 

bool 
c2 

ports(c2) : bv8 X bv8 X bool X bv8 X bool

bv<16> 

bv<16> 

bool 

bv<16> 

bool 
c3 

ports(c3) : bv16 X bv16 X bool X bv16 X bool

The dtp mapping function has 3 choice 
in assigning the ports to compiled types!

Mapping can be viewed as an IP selection
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Subtyping & Software Components 

Substitutability (polymorphism): 
 

 If we replace A by B in the system, will correctness be maintained? 
 (may be a different abstraction, language, required environment)  

int 

int 

bool 

int 

bool 
c1 

bv<8> 

bv<8> 

bool 

bv<8> 

bool c2 

Callback<T*()> Process() 

≤ 

➜ Problem gets complex as the notion of substitutability is enhanced. 
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Subtyping Relations 

w  Lattice ordering for subtyping 
and conversion relation 

n  Value subset semantics 
(range restriction) 

n  Char ≤ Int  ≤ Long ≤ Num 

w  Goal: infer the most general 
type that will allow a program 
to be correct 

n  Exact static match  
n  Lossless run-time conversion 

Double 

String 

UNKNOWN 

General 

Object 

Int 

Complex 

Boolean Num 

Fix Long 

Char 
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Type System in Balboa 
w  Semi-lattice type relationship:  

n  NP-hard to find a match for a netlist 
w  Set P of ports partitioned into k sets (component) 
w  Set S of signals 
w  For each component, with its port vector p, assign a 

row from the TAT table such that if there is a signal set 
is compatible. 

w  (One-in-Three Mono 3SAT can be reduced to Type 
Inference) 

n  Full type resolution is not guaranteed  
w  Solved as a constrained optimization problem 

n  If a component is not typed in the CIL 
w  The SLI delays the instantiation of the compiled internal 

object  
w  Interpreted parts of the component are accessible 

n  Verify if types are compatible when a relationship is set 
w  If a compatible type is found, the SLI allocates the 

internal object and sets the relationship 
w  If not, the link command is delayed until the types are 

solved 

Component 

Type parameters build  
the type availability table 

Component
Integration, CIL

Split-Level 
Interface/BIDL

C++, SystemC

System designer

C
om

piled
Interpreted

Reference: TCAD, Dec 2003 



2015:	ENTER	DARPA	
	

”What	can	we	do	to	reduce	design	
2me	by	100	weeks?	“	
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CERTUS:	SPEEDING	UP	SOC	DESIGN	BY	5X	



§  Three		func4onal	groups:	“Architecture”,	“Synthesis	&	Op4miza4on”,	“SOC/
circuits”.	

§  Each	of	these	groups	has	direct	interface	to	relevant	external	community	(RISC	V	
SIG,	MOSIS,	NGAS)	

Team	

Architectural	Design	and	Op4miza4on	

Michael	
Taylor	

Mani	
Srivastava	

Chris	
BaSen	

Synthesis	and	Op4miza4on	
Methods	

Rajesh	
Gupta	

Zhiru	Zhang	

SOC/Circuits	

Ian	Galton	 Patrick	Mercier	 Ron	
Dreslinski	

RISC	V,	IP	
Community	

SOC		
Accelerator	

Manufacturing	
Interface	

25	



1:	Start	with	an	architectural	template	that	provides	for	three	key	MOCs	
(MPU,	GPU,	FPGA)	
General-purpose	computa4ons	(OS,	IO	etc);	exploit	parallelism	at	coarse-	and	
fine-grain	and	provide	for	custom	accelerators.	
2:	Component	Composi4on	Framework	(PyMTL)	
Capability	to	rapidly	compose	and	verify	different	languages	(Python,	
SystemVerilog,	System	C)	at	different	levels	of	abstrac4on	(un4med,	cycle	
approx.,	cycle	accurate).	
3:	Regularizing	High-level	Synthesis	(HLS)	
Capability	to	take	brand	new	applica4on	and	produce	accelerator	in	12	weeks	
with	rapid	design	explora4on.	ROCC	interface	and	RSP	programming	model.	
4:	Backend	Design	and	Verifica4on	Flow	
Low-complexity,	well-structured,	rapidly	portable,	RTL-to-GDS	plus	analog	and	
hierarchical	flow.	
Approach:	Compartmentalized,	fully	scripted	hierarchy	flow	for	parallel	
itera4on	toward	4ming	closure	and	verifica4on.	
		

Several	key	innovaCons,	no	silver	bullet	



5:	Standard	Template	Library	(STL)	of	IP	Blocks	
Capability:	rapid	development	of	tradi4onal	(non-HLS)	architectural	blocks	
using	extremely	heterogeneous	composability	through	latency-insensi4ve	
interfaces,	highly	parameterized,	standardized	containers	and	components,	
represen4ng	all	major	HW	design	building	blocks,	large	and	small.	
	

Support	for	regression	tes4ng	that	ensure	that	component	changes	do	not	
break	components	with	dependencies	
	
6:	Fully	synthesizable	PLL	and	LDO	analog	blocks	
100%	std	cell	design	and	APR;	easy	to	port.	Use	4me	as	analog	values	instead	
of	RLC's	or	charge.	Achieved	industry	compe44ve	metrics.	
Highly	scalable	and	rapidly	deployable/portable	digital	LDO	architecture	due	
to	digital	PD	control.	Uses	minimal	number	of	custom	cells.	16nm	tapeout	
outperforms	all	other	digital	LDOs	and	analog	LDOs.	
	
	
	

	
	
	
	
	
	

Several	key	innovaCons,	no	silver	bullet	



§  A	4ered	parallel	accelerator	fabric	that	enables	decomposi4on	of	tasks	
according	to	control,	communica4ons	and	memory	needs	
•  Control-plane	Tier	with	Five	RISC-V	Linux	cores	each	capable	of	running	a	separate	

image	of	Linux	
§  Cores	used	for	general	purpose	control-plane	codes	such	as	network	stack,	OS	

•  Data-plane	Tier	op4mized	for	minimum	energy	opera4ons	for	high	throughput	
§  496-core	(31x16	RISC-V	4led)	manycore	array	

•  Accelera4on-plane	Tier	that	is	connected	to	dataplane	and	to	controlplane	4ers	
§  Dataplane	can	stream	words	to	accelerators	by	performing	remote	stores	
§  BNN	obviates	need	for	dedicated	SRAM	banks	to	store	weights	by	using	dataplane	as	a	

programmable	stream	buffer	

§  Manycore	deploys	remote-store	programming	where	the	4les	can	do	word	
writes	to	other	4les’	memory	spaces	thus	enabling	stream	programming	
•  Out	performs	MIT	RAW	and	Tilera	with	far	less	buffer	space	and	unlimited	deadlock	

free	channels	between	4les	(10X	more	dense	than	RAW)	

§  Adap4ve	and	response	dynamic	power	management	through	2x5	manycore	
array	that	provides	housekeeping	DVFS	func4ons.	

§  Deploys	a	4ered	memory	system	as	well	that	supports	direct	access	and	DMA	
	

CELERITY:	Probably	the	single	biggest	
advance	of	the	RISC-V	Ecosystem	



§  TSMC	16nm	FinFET,	25	mm2,	~360	million	transistors	
§  511	RISC-V	Cores	

•  5	Linux-capable	64-bit	“Rocket	Cores”	generated	from	Chisel:	5-stage,	in-order	
scalar	processor,	DP	floa4ng	point,	16	KB	4-way	each	I-cache	and	D-cache,	
RG64G	ISA,	0.97	mm2	per	core	@625MHz	

•  496	core	mesh	4led	array	“Manycore”,	distributed	memory	model,	4KB	each	
instruc4on	and	data	memory.	RV32IM	ISA,	80	Gbps	duplex	adjacent	links,	
0.024	mm2	@1.05	GHz	

•  10	core	mesh	4led	array	“Manycore”	(low	voltage)	
§  1	Binarized	Neural	Network	Accelerator,	0.356	mm2		

•  13.4	MB	model	size	with	9	layers	

§  On-chip	synthesizable	PLLs	and	DC/DC	LDO	
§  3	Clock	Domains	

•  400	MHz	–	DDR	IO	
•  625	MHz	–	Rocket	Core	+	BNN	Accelerator	
•  1.05	GHz	– Manycore	Array	

§  672-pin	flip-chip	BGA	package	
§  9-month	from	PDK	access	to	tapeout.	

CELERITY	CHIP	OVERVIEW	



§  XY-dimension	network-on-chip	(NOC)	
§  Unlimited	deadlock-free	communica4ons	

§  Remote	Store	Programming	Model	
•  Word	writes	into	other	4le’s	data	memory	
•  Off-chip	communica4on	uses	same	network	
•  MIMD	programming	

§  Fine	grain	parallelism	through	high-speed	
communica4on	between	4les	

§  Token-queue	architectural	primi4ve	
•  Reserves	buffer	space	in	remote	core	
•  Ensures	buffer	is	filled	before	accessed	
•  Tight	producer-consumer	synchroniza4on	
•  Streaming	programming	model	suppor4ng	

producer-consumer	parallelism	

Manycore	Array	



BGA  

 
Northbridge 

DDR-3 
PCI-E 

USB 3.0 

Gig-E 

ROCC 

Rocket Tile 

RISC-V 
Processor 

I-Cache D-Cache 

ROCC 

Rocket Tile 

RISC-V 
Processor 

I-Cache D-Cache 

ROCC 

Rocket Tile 

RISC-V 
Processor 

I-Cache D-Cache 

ROCC 

Rocket Tile 

RISC-V 
Processor 

I-Cache D-Cache 

High Speed 
Source-Synchronous 
Communication 
Link 

AXI 

AXI 

AXI 

AXI 

AXI 

Rocket Tile 

RISC-V 
Processor 

I-Cache D-Cache 

ROCC 

  BNN 
Accel 

Basejump  
Motherboard 

RISC-V 

Mem 

XBAR 

N
oC Router 

Mem 

vanilla-5 

Synthesizable 
PLLs 

Synthesizable 
DC/DCs 

10-core 
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CELERITY	



Towards	Highly	ProducCve	Hardware	SpecializaCon		

Ease of Use

Q
ua

lit
y 

of
 R

es
ul

ts
 (Q

oR
)

C-to-gates

Manual HDLs

Python

~2-3X
Efficiency gap

~10-20X 
Productivity gap

Goal: Architect-Accessible 
High-Quality HLS

High-Level 
Programs

1 2

3
4

RTL 
Descriptions

①  	Cross-layer	opCmizaCons	

②  	RegularizaCon	synthesis	
③  	Automated	refinement	checking	

④  	Agile	composiConal	methods	



§  Source-to-source	transforma4on	
to	generate	op4mized	C++	or	
SystemC	specifica4on	
•  Build	on	LLVM	compiler	

infrastructure	
•  Leverage	commercial	HLS	tools	

§  Vivado	HLS	for	FPGA	
prototyping	

§  Cadence	C-to-Silicon	Compiler	
for	ASIC	implementa4on	

ComposiConal	Synthesis	Toolflow	

C++	design	

C/C++ 
Front 
End 

LLVM	IR	

CERTUS 
HLS 

XFORMS 

OpCmized	IR	

CERTUS 
HLS  

Code Gen 

Commercial 
HLS Tool 

HW-friendly	
C++/SC	design	

RTL	design	

Technology	used	

CERTUS HLS  
framework 
based on 

open-source 
LLVM 

compiler 
infrastructure 

Commercial 
CAD toolflow Commercial 

RTL2GDS 
Flow 

Layout	

Design	flow	

Cross-layer	
feedback	



InnovaCon	#1:	Cross-Layer	Synthesis	OpCmizaCons	

Conventional HLS : 2-cycle latency 

Cycle 0

Cycle 1

and

xor

o1

o2

o4

o3
2ns

2ns

2ns
or

and

i1 i2 i3 i5 i4 

Considers tech mapping :  
1 cycle (combinational) 

i3 i5 i1  i2  

o1

o2

o4

o3

i4 

2ns

2ns

Cycle 0

Cycle 1

§  Uncover	op4miza4on	opportuni4es	by	looking	across	abstrac4on	layers	
•  Address	the	interdependence	between	HLS		

and	low-level	synthesis	
•  Intelligent	sampling	in	queries	to	downstream	tools			

HLS
▸  Input is high-level CDFG containing 

cycles, user timing constraints, multi-
bit values, and complex ops

▸  The actual hardware (control logic, 
etc.) has yet to be generated

RTL/logic synthesis
▸  Part of RTL2GDS flow 
▸  Input is a low-level netlist with fixed 

register boundaries, single-bit values, 
and simple logic ops



§  Regular	structures	can	reduce	the	size	of	design	task	and	op4mize	QOR	
§  Regularity	can	be	in	func4on	(similarity	of	opera4ons),	structure	(similarity	

of	connec4ons)	or	topological	(similarity	of	placement).	Degree	of	regularity.	

InnovaCon	#2:	Regularizing	Synthesis	



InnovaCon	#3:	Automated	Refinement	Checking	

§  Specifica4on	≡	Implementa4on		
=>	They	have	the	same	set	of	execu4on	sequences	of	visible	instruc4ons.	
§  Visible	instruc4ons	are:	Func4on	call	and	return	statements.	
§  Two	func4on	calls	are	equivalent	if	the	state	of	globals	and	the	arguments	are	

the	same.	Two	returns	are	equivalent	if	the	state	of	the	globals	and	the	
returned	values	are	the	same.	

§  Split	the	program	state	space	into	control	flow	and	data	flow	states	
•  CF	state	explored	by	traversing	CFG	genera4ng	constraints	required	for	the	visible	

instruc4ons	to	be	matched.	DF	state	explored	using	automated	theorem	prover.	
The	property	checker	takes	as	
input	a	high-level	model	and	
through	a	repeated	process	
of	checking	and	correc4on	
produces	a	golden	reference	
model.	
The	refinement	or	the	
equivalent	checker	takes	as	
input	a	specifica4on	and	a	
implementa4on	and	checks	if	
the	implementa4on	
preserves	certain	proper4es	
of	the	specifica4on.	



InnovaCon	#4:	Agile	PyMTL/HLS	ComposiCon	

83: 0003041060800 >   
2078: #             > 1 
2160: 000e1c1860f00 >   
4155: #             > 2 
4237: 0006081810c00 >   
6232: #             > 5 
6314: 0006123850e00 >   
8309: .               > 8 

void	Digitrec(	
		hls::stream<digit>&	digit_strm,	
		hls::stream<bit4>&		out_strm	
);	
	
void	update_knn(		
		digit	test_inst,		
		digit	train_inst,	bit6			
		min_distances[K_CONST]		
);	

C++ Source

…Digit 0
find_diff

Digit 1
find_diff

Digit 9
find_diff

Nearest Neighbor

Digit 0 training set Digit 9 training set…
… …

Test Source Test Sink

1014

RTL Architecture

PyMTL Modeling Framework

from	pymtl	import	*	
	
class	Digitrec(VerilogModel):	
		def	__init__(	s	):	
				s.digit_strm	=	InValRdyBundle		(Bits(49))	
				s.out_strm	=	OutValRdyBundle	(Bits(4))	
	
				s.set_ports({	
						'ap_clk':	s.clk,	
						'ap_rst':	s.reset,	
						'digit_strm_V_V':	s.digit_strm.msg,	
						'digit_strm_V_V_ap_vld':	s.digit_strm.val,	
						'digit_strm_V_V_ap_ack':	s.digit_strm.rdy,	
						'out_strm_V_V':	s.out_strm.msg,	
						'out_strm_V_V_ap_vld':	s.out_strm.val,	
						'out_strm_V_V_ap_ack':	s.out_strm.rdy,	
		})	
	
		def	line_trace(	s	):	
				return	"{}	>	{}".format(…)	

Python Hardware Model

HLS

Golden Results

1014
==?

Simulation Line Trace Simulation Waveform



“Object	Oriented”	ComposiConal		
SpecificaCon	using	PyMTL	

class ProcXcel ( Model ):

  def __init__( s, ProcModel, XcelModel ):

    # Interface
    s.proc_imemreq  = OutValRdyBundle ( MemReqMsg4B  )
    s.proc_imemresp = InValRdyBundle  ( MemRespMsg4B )
    s.proc_dmemreq  = OutValRdyBundle ( MemReqMsg4B  )
    s.proc_dmemresp = InValRdyBundle  ( MemRespMsg4B )
    s.xcel_memreq   = OutValRdyBundle ( MemReqMsg4B  )
    s.xcel_memresp  = InValRdyBundle  ( MemRespMsg4B )

    # Child models
    s.proc = ProcModel()
    s.xcel = XcelModel()

    # Processor <-> Memory
    s.connect( s.proc_imemreq,  s.proc.imemreq  )
    s.connect( s.proc_imemresp, s.proc.imemresp )
    s.connect( s.proc_dmemreq,  s.proc.dmemreq  )
    s.connect( s.proc_dmemresp, s.proc.dmemresp )

    # Processor <-> Xcel
    s.connect( s.proc.xcelreq,  s.xcel.xcelreq  )
    s.connect( s.proc.xcelresp, s.xcel.xcelresp )

    # Xcel <-> Memory
    s.connect( s.xcel_memreq,   s.xcel.memreq   )
    s.connect( s.xcel_memresp,  s.xcel.memresp  )
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§  Extensive	tracking	of	raw	design	effort	data	in	person-hours	at	individual	
cells,	blocks	

§  Goal:	5x	reduc4on	in	design	effort	
•  bsg_comm_link	reduc4on:	21.6X		
•  Manycore2x10	reduc4on:	5.5x	

§  Goal:	30-week	design	4me	for	a	10-person	design	team	on	a	chip	of	logic	
blocks	>200K	gates,	mul4ple	mixed	signal	blocks,	mul4ple	SRAM	blocks,	3rd	
party	IP	
•  Total	project	dura4on:	52	weeks	from	kickoff	
•  Total	engineering	4me	spent:	12,892	hours	or	322	person-weeks	

§  Top-level	chip	verifica4on	4me	of	DRC,	LVS:	~1	week	
§  Goal:	Design	produc4vity	target:	50K	gates/engineer-day,	1.0	analog	block/

engineer-week	
•  71K-377K	gates/engineer-day,	~1	week	for	full	PLL.	
•  0.71	person-week/day	for	Clock,	1.5	person-week/day	for	Power	Supply	

QuanCfying	Results	



§ CERTUS	Design	Time	
•  Manycore	16x31	Array:	377K	gates/engineer-day	
•  Rocket	core:	71.5K	gates/engineer-day	
•  BNN	accelerator:	12.3	K/gates/engineer-day	

§  (includes	algorithm	design,	binariza4on	reduces	gate	count	but	increases	design	
4me.	A	fixed-point	CNN	would	be	30-50x	larger	and	take	less	4me)	

§ Analog	blocks:	(Clock	Generator:	2	blocks;	SAR-LDO:	4	blocks)	
•  Design	of	the	Clock	Generator:	1.25	person-weeks;	<1	person-week/block	
•  Prelayout	of	the	Clock	Generator:	2	person-weeks;	1	wk/block	
•  Postlayout	verifica4on	of	the	clock	generator:	~4	person-weeks;	2wk/block	
•  Design	of	DC/DC	Power	Supply	block:	6	person-weeks;	1.5	person-week/block	
•  Prelayout	verifica4on	of	the	power	supply:	1.5	person	weeks	
•  Post	layout	verifica4on	of	the	power	supply:	9	person	weeks.	

Metrics	(ConCnued)	

Manycore 
Generator	Manycore	 Manycore	 Coyote	 BNN	

Design Time	 376,903	 71,511	 12,294	
Prelayout Verification	 5,621	 703,553	 9,355	 3,659	
Postlayout Verification	 3,822	 191,878	 54,097	 12,806	



SUMMARY AND OUTLOOK 
w Nearly Three Decades of Computer 

Architecture and EDA advances have settled on 
a few commonly accepted dictums 
n  No need for language wars for High-level Design 

w  Sophisticated typing and validation tools instead. 

w No universally acceptable compute MOC 
n  From Globally Shared Memory multi-threaded 

programming to NUMA models to direct hardware 
execution under explicit memory management 
w  All three have a role in a realistic machine 

w Focus on Reuse, Modularization and 
Automation to reduce design time. 
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