

Open-Silicon.com

490 N. McCarthy Blvd, #220 Milpitas, CA 95035 408 240-5700

Multi-Die ASIC SiP (System in Package) Manufacturing

CONFIDENTIAL

Open-Silicon

Your Idea. Delivered.™

Multi-Die ASIC SiP (System in Package) Overview

First ASIC-vendor to bring 2.5D to prototype silicon (Avatar) Awarded best chip-design at ARM TechCon 2013,Santa Clara

Why 2.5D has a future → Memory Wall

- Processing can see 50-75% idle times
- CPU performance is increasing 4x-8x compared to memory performance
- Power is a big issue
 - HBM uses wide-IO to reduce frequency \rightarrow lower power
- IO space is limited (packaging)
 - Memory cannot become wider
- Faster data
 - USB, PCIe, SATA, all are faster now
 - · Multiple interfaces vie for same DRAM
 - Larger on-chip storage is needed
 - Video/graphics is the biggest contributor

High Bandwidth Memory

- In-house design, Hard-IP
- Leveraging 2.5D die2die "channel" experience from Avatar
- e.g. on Interposer interconnect electricals, ESD, DfT, etc.
- CMOS IO driver, 1GHz/2Gbps DDR with light output loading (1 – 8mm interposer trace)
- Electrically compatible with JEDEC HBM DRAM spec
- TSMC 16FF-GL Implementation

Avatar 2.5D Solution Demonstration

Building the Ecosystem

confidentia

Providing System-Optimized ASIC Solutions

Additional Benefits Of 2.5D Based Design

- Yield Improvement for large SoC die
- Overall power improvement by mixing slow and fast parts
- Risk and Cost improvement due to process node mix
- Die partitioning and optimization for analog, performance, power management, etc.
- Integrating High Bandwidth Memory, flash, or other memory technologies

Challenges

00000000 · Him Him Him Him Him