Raven: A CHISEL designed 28nm RISC-V Vector Processor with Integrated Switched-Capacitor DC-DC Converters & Adaptive Clocking

Yunsup Lee, Brian Zimmer, Andrew Waterman, Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtic, Ben Keller, Stevo Bailey, Milovan Blagojevic, Pi-Feng Chiu, Henry Cook, Rimas Avizienis, Brian Richards, Elad Alon, Borivoje Nikolic, Krste Asanovic, Peter Ateshian*

University of California, Berkeley *UCB Alumni, Naval Postgraduate School

Take away: CHISEL = Agile Hardware Development Methodology

BLUF: RISC-V compared to ARM Cortex A5

10% higher in DMIPS/MHz,49% more area-efficient

Our Physical Design Flow – A novel EDP

CHISEL Source Code/Scala CHISEL Compiler RTL Code (Verilog) Synthesis Place-and-Route Gate-level Netlist Signed-Off Design Formality Formal Verification PrimeTime/StarRC Static Timing Analysis VCS Post-PNR Gate-level Simulation Hierarchical SYN & PNR UPF-based MV SYN & PNR

What's CHISEL?

(Constructing Hardware In a Scala Embedded Language).

CHISEL is a hardware construction language embedded in the high-level programming language Scala. Why? CHISEL enables very rapid SoC design iterations with less work.

A separate Chisel tutorial document provides a gentle introduction to using Chisel, and should be read first. This manual provides a comprehensive overview and specification of the Chisel language, which is really only a set of special class definitions, predefined objects, and usage conventions within Scala. When you write a Chisel program you are actually writing a Scala program. You are parameterizing Verilog/VHDL.

In this manual, we presume that you already understand the basics of Scala. If you are unfamiliar with Scala, we recommend you consult one of the excellent Scala books ([3], [2]).

 Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, Wawrzynek, J., Asanović Chisel: Constructing Hardware in a Scala Embedded Language in DAC '12.
 Odersky, M., Spoon, L., Venners, B. Programming in Scala by Artima. Chisel: Constructing Hardware in an Scala Embedded Language https://chisel.eecs.berkeley.edu/2.2.0/manual.html[2/4/2015 9:14:28 AM]
 Payne, A., Wampler, D. Programming Scala by O'Reilly books .Copyright © 2012-2014 The Regents of the University of California ‐ All Rights Reserved

Motivation

Energy efficiency constrains everything

- SoCs are designed with an increasing number of voltage domains for better power management

- Dynamic voltage & frequency scaling (DVFS)

- Maximizes energy efficiency meets performance constraints

- Off-chip conversion
- **K** Few voltage domains
- **K** Costly off-chip components

Slow mode transitions

On-chip conversion

Many domains

 \bigstar No off-chip components

 \bigstar Fast transitions

Off-chip conversion example iPhone 6/7

Credits: iFixit Voltage Regulators \$ Primary Power Management IC PMIC \$\$ Secondary Power Management IC PMIC \$

Raven Project Goals

Build a microprocessor that is:

- Fine-grained DVFS
- High conversion efficiency Energy-efficient
- Entirely on-chip converter
- Low area overhead

Low-cost

Talk Outline

- Motivation/Raven Project Goals
- On-Chip Switched-Capacitor DC-DC Converters
- Raven3 Chip Architecture
- Raven3 Implementation Rapid
 CHISEL Iteration- novel EDP
- Raven3 Evaluation
- RISC-V Chip Building at UC Berkeley

Summary

For more details on the Switched-Capacitor DC-DC Converters, please take a

look at HC23 tutorial "Fully Integrated Switched Capacitor DC-DC Conversion" by Elad Alon

Switched-Capacitor (SC) DC-DC Converters SC DC-DCC

 Partition capacitor and switches into many "unit cells" for better analog modularity

- Keeps the custom design modular
- Makes it easier to floorplan SC DC-DC converter

Traditional Approach: Interleaved Switching

- Switch one unit cell at a time to smooth out voltage ripple
- Pros
- Voltage ripple at the output is suppressed
- Great for digital designs with fixed frequency clocks
- Cons
- Each unit cell charge shares with other unit cells

- Causes an efficiency loss beyond typical switching losses

Raven's Approach: Simultaneous Switching

 Switch all unit cells simultaneously when V_{out} reaches a lower bound V_{ref}

 Add an adaptive clock generator so that clock frequency tracks the voltage ripple

- Pros
- Simplifies the design
- No charge sharing losses
- Better energy efficiency
- Cons

- Need to deal with big ripple on voltage output

Page 10

Self-Adjusting Clock Generator

Replica tracks critical path with voltage ripple

• Controller quantizes clock edge (Tunable Replica Path)

DLL 2GHz input, 16 phases Controller Select closest edge Tunable Replica Path Vout

Adaptive system clock Vout

Reconfigurable SC Converters for DVFS

Simple lower bound control
 Lower-bound Controller Operational
 Waveform

Raven3 Chip Architecture

 RISC-V is a new, open, and completely free general purpose instruction set architecture (ISA) developed at UC Berkeley starting in 2010

• RISC-V is simple and a clean-slate design

- The base (enough to boot Linux and run modern software stack) has less than 50 instructions

• RISC-V is modular and has been designed to be flexible and extensible

- Better integrate accelerators with host cores

RISC-V software stack

- GNU tools (GCC/Binutils/glibc/newlib/GDB), LLVM/Clang, Linux, Yocto (OpenJDK, Python, Scala)

Checkout <u>http://riscv.org</u> for more details

Rocket Scalar Core

PC IF ID EX MEM To Vector Accelerator

- 64-bit 5-stage single-issue in-order pipeline
- Design minimizes impact of long clockto-output delays of SRAMs
- 64-entry BTB, 256-entry BHT, 2-entry RAS
- MMU supports page-based virtual memory
- IEEE 754-2008-compliant FPU
- Supports SP, DP Fused-Multiply-Add (FMA) with HW support for sub-normals WB

ARM Cortex-A5 vs. RISC-V Rocket

Category **ARM Cortex-A5 RISC-V Rocket** ISA 32-bit ARM v7 64-bit RISC-V v2 Architecture (32, 64, 128) Single-Issue In-Order Single-Issue In-Order 5-stage Performance 1.57 DMIPS/MHz 1.72 DMIPS/MHz Process **TSMC 40GPLUS TSMC 40GPLUS** Area w/o Caches 0.27 mm² 0.14 mm_2 Area with 16K Caches 0.53 mm_2 0.39 mm₂ Area Efficiency 2.96 DMIPS/MHz/mm₂ 4.41 DMIPS/MHz/mm₂ Frequency >1GHz >1GHz **Dynamic Power** <0.08 mW/MHz 0.034 mW/MHz

- PPA reporting conditions
- 85% utilization, use Dhrystone for benchmark, frequency/power at TT
0.9V 25C, all regular Vt transistors
Overall Result:
10% higher in DMIPS/MHz,
49% more area-efficient

Five 28nm & Six 45nm RISC-V Chips Taped Out So Far

Raven Raven-1 Raven-2 Raven-3 Raven-3.5 EOS14 EOS16 EOS18 EOS20 EOS22 EOS24

Agile Hardware Development Methodology

C++

FPGA

ASIC Flow

Tape-in

Tape-out

Big Chip

Tape-out

- "Tape-in": Designs that could be taped out
- LVS clean & DRC sane
- Pass RTL/gate-level simulation and timing
- Fully scripted CHISEL ASIC flow
- RTL change to chip <1day
- Get early feedback
- Automatic nightly regressions
- Identify source of subtle bugs
- Check longer programs on FPGA
- Iterate quickly on RTL with using the

C++ emulator (Checkout

chisel.eecs.berkeley.edu for more details)

Summary

- 28nm Raven3 processor features:
- Fine-grained, wide-range DVFS (20ns, 0.45-1V)
- Entirely on-chip voltage conversion
- High system efficiency (>80%)
- Extreme energy efficiency (34/26 GFLOPS/W)
- Key enablers
- RISC-V, a simple, yet powerful ISA (free and open!)
- Agile development, build hardware like software
- Chisel, lets designers do more things with less effort
- RISC-V core generators and software tools open-sourced

at <u>http://riscv.org</u>

• Energy-efficient, low-cost on-chip DC/DC converters are buildable!

Acknowledgements • Funding: BWRC members, ASPIRE members, DARPA PERFECT Award Number HR0011-12-2-0016,

David Patterson

The following table compares a 32-bit ARM Cortex-A5 core to a 64-bit RISC-V Rocket core built in the same TSMC process (40GPLUS). Fourth column is the ratio of RISC-V Rocket to ARM Cortex-A5. Both use single-instruction-issue, in-order pipelines, yet the RISC-V core is faster, smaller, and uses less power.

ISA Implementation	ARM Cortex-A5	RISC-V Rocket	RIA
ISA Register Width	32 bits	64 bits	2
Frequency	>1 GHz	>1 GHz	1
Dhrystone Performance	1.57 DMIPS/MHz	1.72 DMIPS/MHz	1.1
Area excluding caches	$0.27 mm^2$	0.14 mm ²	0.5
Area with 16KB caches	0.53 mm ²	0.39 mm ²	0.7
Area Efficiency	2.95 DMIPS/MHz/mm ²	4.41 DMPS/MHz/mm ²	1.5
Dynamic Power	-0.08 mW/WHz	0.034 mWMHz	>= 0.4

Intel ARO, AMD, GRC, Marie Curie FP7,

NSF GRFP, NVIDIA Fellowship

 Fabrication donation by STMicroelectronics

• Tom Burd, James Dunn, Olivier Thomas, & Andrei Vladimirescu

Glossary

- DVFS: Dynamic Voltage and Frequency Scaling
- SC: Switched Capacitor
- DLL: Delay-Locked Loop
- LDO: Low-Dropout Regulator
- FDSOI: Fully Depleted Siliconon-Insulator
- FMA: Fused-Multiply-Add
- BTB: Branch Target Buffer
- BHT: Branch History Table
- RAS: Return Address Stack