System Level Functional Verification and Power Analysis for Low Power Design

T.C. Lin Cadence Design Systems, Inc. April 21, 2016

cādence[®]

Agenda

- Reasons low power design becomes so critical
- Low power design issues from system level's perspective
- What are the main concerns in low power design
- Power reduction techniques and key design questions
- Low power functional verification power analysis at system level
 - Challenges
 - Things you need to do
 - Tools you need to leverage

Low Power: Everyone's Concern Different drivers in different verticals

Low-power requirements drive different design decision

- Design architecture
- IP make versus buy
- Manufacturing process
- Specific low-power design techniques

cādence[°]

It's a System Level Issue - SoC running With Power Control and Application Software

Main "Power Problems" in SoC and Low Power Design Techniques

- Key power design concerns
 - Peak power consumption
 - Maximum instantaneous difference in power
 - Maximum average power consumption
 - Average power consumption
 - Stand-by power consumption
- Power reduction techniques
 - Goals reduce leakage power, internal power, dynamic power
 - Multi-supply voltage, power gating
 - Logic sharing, clock gating, DVFS, using low power ASIC cells, ...
 - Using CPF or IEEE1801/UPF for low power control power domain concept
- Key design questions
 - Does my design work with all power control HW/SW kick in?
 - Is power consumption under budget? Meeting requirements under different applications? Will my circuitry safe under different working condition?

cādence[®]

cādence°

Power Aware Functionality Modeling with IEEE1801

Figure 9. Power-up/down sequence

SoC Power Analysis Requires "Deep" Cycles

Low Power Functional Verification and Power Analysis at System Level

- Leverage tools which supports verification and analysis at system level
 - Allow PMS and application software to run with design to create real scenario
 - Controllability let users specify run condition/environment for low power operations
 - Observability provide full visibility of system behavior (design states, control signal values, etc.)
- For functional verification
 - Mimic low power control and circuitry behavior at system level
 - Be able to mimic power shutoff, retention, and isolation condition
 - flip-flop and memory randomization from PSO to power back-on
 - Be able to dynamically configure 'trigger' condition with low power objects
 - Allow to check impact of various low power conditions with quick turnaround time
 - Self-checking of power intents, and report errors when there are violations
 - Low power event log record and report power control activity during a test

Low Power Functional Verification and Power Analysis at System Level (cont'd)

- For power analysis
 - Power analysis takes time
 - Need special strategy
 - Measure power consumption in hardware with software impact factored in
 - Progressive power analysis techniques (time domain)
 - Power analysis at coarse grain level at high speed for long period of time
 - Identify window of interest
 - Detailed power analysis at smaller set of runtime window
 - Repeat the detailed analysis without needing to re-run test
 - 'Hot spot' analysis which design module consumes more power (space domain) in the SoC
 - Analysis tool needs to generate various files for different analysis purpose
 - saif file for long time window for average power calculation
 - Vcd/fsdb/sst2 for short (peak power) window for IR drop analysis
 - Be able to support both RTL level and gate level power analysis

cādence°

B B C B C B C B C B C