Power Management for ASICs

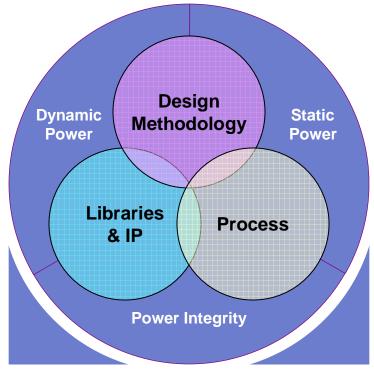
April 24, 2015

Prasad Subramaniam eSilicon Corporation

€Silicon[®]

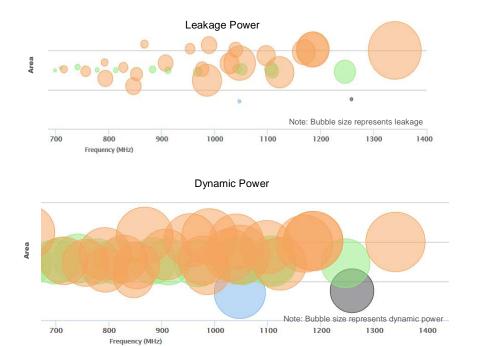
CONFIDENTIAL |

Power Trends & Challenges


- System power dissipation is becoming more critical
 - On-going integration increasing overall system power
 - "Green" systems and "Green" companies imperative
 - Power management no longer limited to mobile applications
- Underlying technology adding to the challenge
 - Device leakage power increasing by process node (mitigated somewhat by FinFET and FDSOI)
 - Voltage no longer scales with process node
 - Package thermal transfer not improving
 - Tools focus on execution

Intelligent Power Management Required!

Power Management System


- Complete power management includes:
 - Using the right process, libraries and IP
 - Leveraging a power-aware design methodology
 - Minimizing overhead while ensuring power integrity

Power Management System

Process Technology Impact on Power

- Wide variation in leakage power seen in same technology depending on target frequency
- Faster doesn't always imply higher leakage
- Dynamic power (per MHz) is similar and primarily depends on power supply voltage

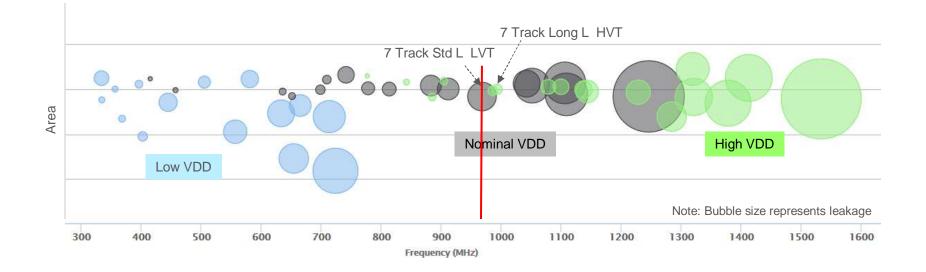
Power and Performance Variations for a JPEG Encoder Core

Library Selection is Complex

- Multiple library variables impact design PPA
 - Number of tracks
 - Channel length
 - VT
 - VDD
 - Availability of power-optimized cells like multi-bit flip-flops

∈Silicon[®]

Standard Cell Libraries for Low Power Design



	Features	Benefits
	Characterized over wider VDD range	Multi-VDD operation
Low Power	Multi-Vt components	Leakage minimization
Baseline	Multi-bit flipflops	Dynamic power reduction
	Decoupling capacitors	Power integrity
Multi-VDD	Level shifters	Level translation between multi-VDD islands
	Isolation cells	Control the logic inputs for interface between OFF and ON domains
	Retention flops	Saves states in shut-down mode
	Power gating switches	Enables island power-down
Long Channel Devices	Long channel standard cells	Lowers leakage on non-critical paths
Gate Length Bias	Automated biasing	Lowers leakage on non-critical paths

Impact of VDD on Power

 Using higher VDD with a high VT and/or long channel library helps reduce leakage for the same performance

Impact of Multi-Vt Cells For Power

Cortex A7 core system in 28nm

- ULVT cells for 1GHz operation at SS, 0.81V, -40C
- Multi-Vt cells for leakage power recovery

	Leakage Power (mW)	Active Power (mW)	Total Power (mW)
ULVT	430	404	834
Mixed VT	191	374	565
Reduction	55%	7%	32%

eSilicon[®]

SRAM Power Management in Memory Compilers

- Low dynamic power
 - Multi-Vt peripheral logic
 - Dual rail operation
 - Ultra low voltage operation using custom logic rule bit cell
 - Memory segmentation
- Low leakage power
 - LL bit cell
 - High Vt peripheral logic
 - Multiple sleep modes
 - Light sleep 40% leakage power reduction with memory data retention and fast wake-up, uses array biasing; one cycle recovery
 - Deep sleep 70% leakage power reduction with memory data retention and integrated power switches, uses periphery shutdown, ten cycle recovery
 - Shutdown 90% leakage power reduction with integrated power switches, fifty cycle recovery time, no data retention

Single Port Optimized Low Voltage/Low Power SRAM 40LP Logic Rule Approach

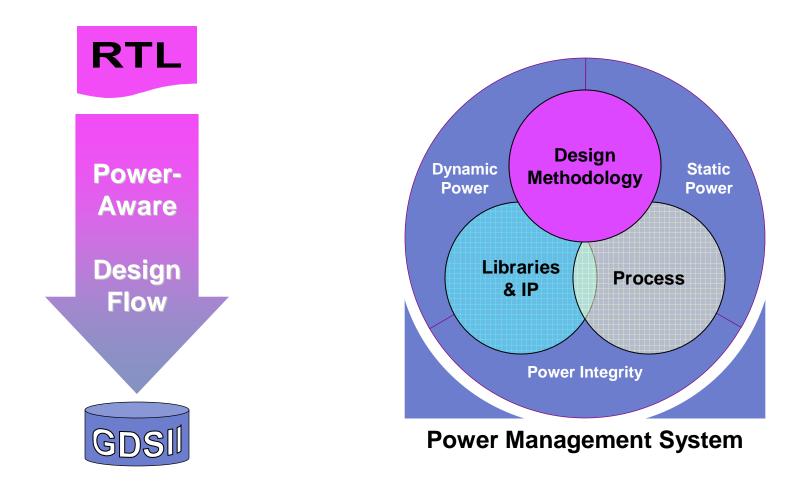
Memory architecture	Word Bit	Mux	Area (um^2) pre-shrink	Read Power	Write Power	Leakage Power	Leakage Power – shutdown mode	
				(uW/MHz)	(uW/MHz)	(mW)	(mW)	
					FF / 1.21V / 125C			
Reference 40LP SP HD design	2048	64	4	50,039	19.38	23.04	1.07	
using 6T Bit Cell	8192	64	16	189,764	43.78	43.03	2.52	
Memory architecture	Word	Bit	Mux	Area (um^2)	Read	Write Power	Leakage Power	Leakage Power – shutdown mode
Memory architecture	Word	Bit			Read	Write	Leakage	Leakage Power – shutdown
Memory architecture	Word	Bit		Area (um^2)	Read Power	Write Power (uW/MHz)	Leakage Power	Leakage Power – shutdown mode
Memory architecture	Word 2048	Bit 64		Area (um^2)	Read Power	Write Power (uW/MHz)	Leakage Power (mW)	Leakage Power – shutdown mode
Memory architecture eSilicon 40LP Custom Low Power /			Mux	Area (um^2) pre-shrink	Read Power (uW/MHz)	Write Power (uW/MHz) FF / 1.2	Leakage Power (mW) 1V / 125C	Leakage Power – shutdown mode (mW)
eSilicon 40LP Custom Low Power / Low Voltage SRAM using	2048	64	Mux 2	Area (um^2) pre-shrink 113,000	Read Power (uW/MHz) 14.75	Write Power (uW/MHz) FF / 1.2 10.99 29.04	Leakage Power (mW) 1V / 125C 0.435	Leakage Power – shutdown mode (mW) 0.017
eSilicon 40LP Custom Low Power /	2048	64	Mux 2	Area (um^2) pre-shrink 113,000	Read Power (uW/MHz) 14.75	Write Power (uW/MHz) FF / 1.2 10.99 29.04	Leakage Power (mW) 1V / 125C 0.435 1.595	Leakage Power – shutdown mode (mW) 0.017

ASIC Example – Network Processor

Reducing Power at the Same Performance

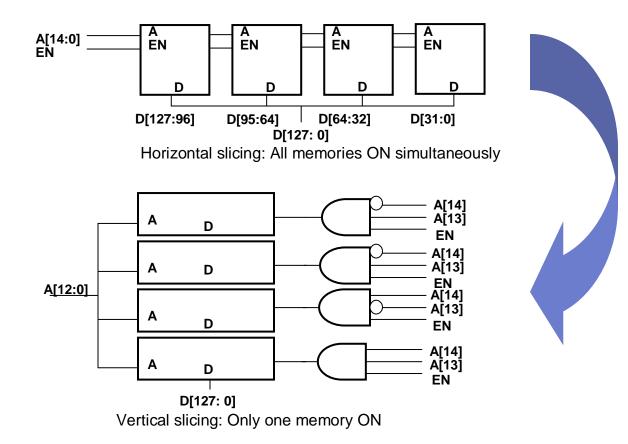
- Technology: 28nm
- 394Mb memory subsystem
- Customization
 - Standard Vt memory array operated at nominal VDD
 - Migrated memory peripheral logic to high Vt
 - Re-characterized for overdrive operating voltage

Architecture	Array Leakage (mW)	Periphery Leakage (mW)	Total Leakage (mW)	Array Leakage (mW) Overdrive	Periphery Leakage (mW) Overdrive	Total Leakage (mW) Overdrive
DP SRAM	231	3726	3957	304	2844	3075
2P RF	2653	12117	14770	2769	9250	11 90 3
SP SRAM	262	1966	2227	313	15 00	1762



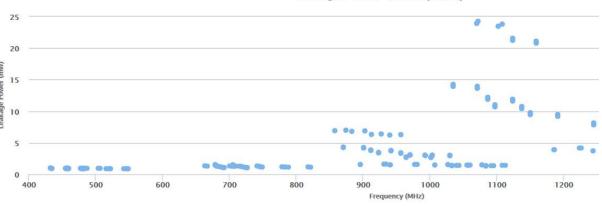
- Result = Same Performance
- Static Power Savings = 20%

Power-Aware Design Methodology



Architectural Optimization

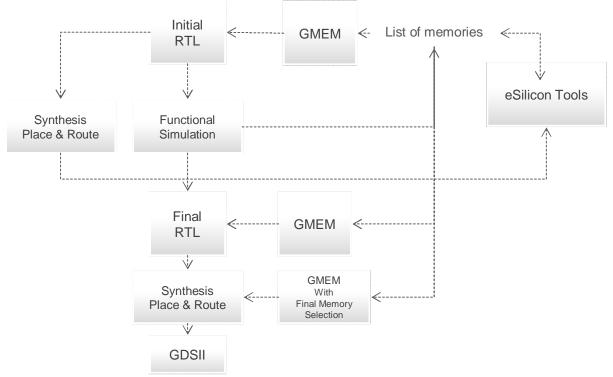
• Example: Memory organization



Total system power management begins at the architectural level

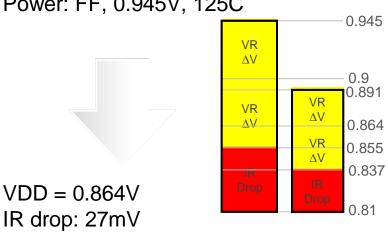
Memory Selection and Optimization

- Typical chip statistic: 80% of the memory area and power are contributed by 20% of the memories
- Memory selection is critical for area and power optimization
- EDA tools focus on logic optimization but leave memory optimization to user
- Traditional memory selection is manual and often ad-hoc
- Memories are changed primarily for functional reasons


Leakage Power vs. Frequency

1kx32 Single port memory choices

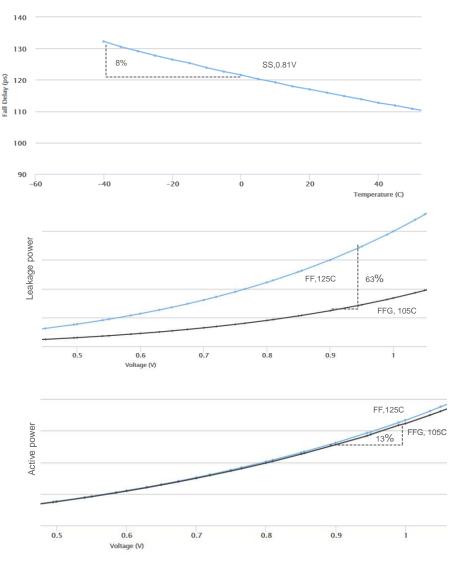
Memory Selection & Optimization Using Generic Memory Models


- eSilicon generic memory model (GMEM) provides automated memory optimization
 - User RTL is based on parametrized generic memory models
 - eSilicon tools select memory based on synthesis results and memory compiler constraints

Signoff for Power

- Standard signoff (28nm)
 - Voltage regulator tolerance: 5%
 - IR drop: 5%
 - Timing: SS, VDD 10%, -40C
 - Power: FF, VDD + 5%, 125C
- Aggressive signoff (28nm)
 - Voltage regulator tolerance: 3%
 - IR drop: 3%
 - Timing: SS, VDD 6%, 0C
 - Power: FFG, VDD + 3%, 105C
 - Lower and re-center VDD

VDD = 0.9V IR drop: 45mV Voltage regulator tolerance: 45mV Timing: SS, 0.81V,- 40C Power: FF, 0.945V, 125C

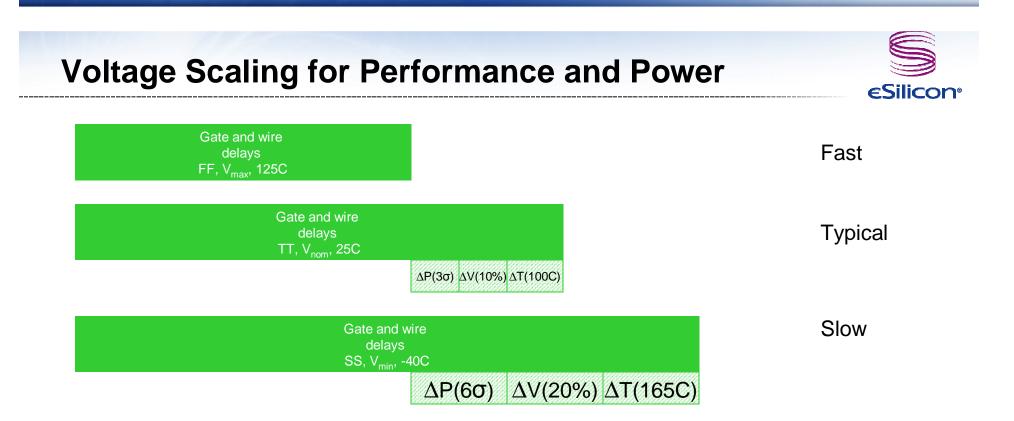


Voltage regulator tolerance: 27mV Timing: SS, 0.81V, 0C Power: FFG, 0.891V, 105C

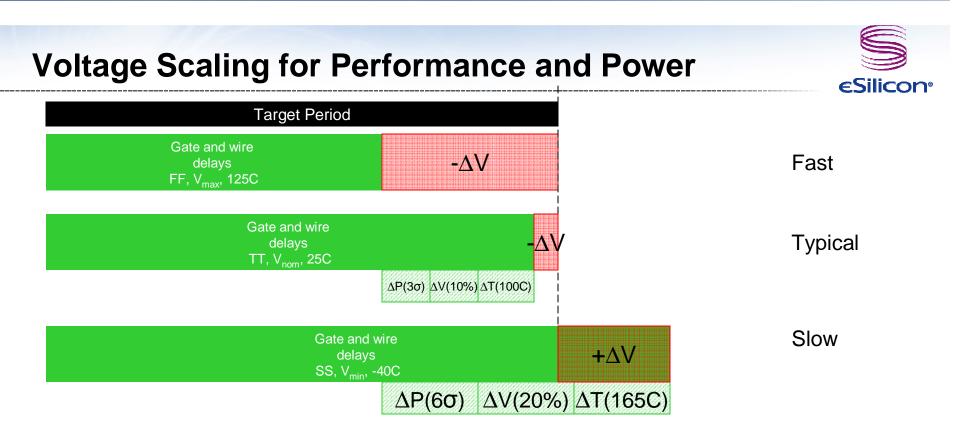
€Silicon[®]

Benefit

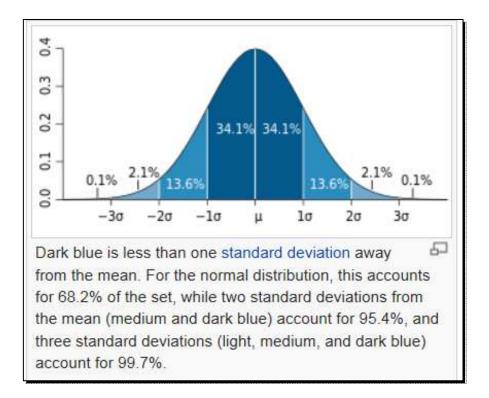
- Easier to close timing
 - Process is faster at 0C compared to -40C by about 8%
 - Can use more transistors with higher Vt
 - Can use additional margin
- Lower Power
 - FFG is more realistic as local variations in wafer average out
 - Leakage is significantly reduced by lowering VDDmax and temperature
 - Leakage reduction: 63%
 - Active power reduction 13%



*∈*Silicon[®]


Voltage Scaling and Binning

- Voltage scaling is the most effective method of reducing power for FF parts
 - Scaling can be continuous or discrete
 - Discrete scaling is equivalent to binning
- Binning allows parts to be separated based on their process corner
 - Different voltages for each bin ensure that performance is met while power is optimized


- The FF, V_{max} , 125C (Fast) part gives the maximum performance
- The TT, V_{nom} , 25C (Typical) part loses performance due to all three components P,V and T
- The worst performance is from the SS, V_{min} , -40C (Slow) part

- Performance can be recovered by increasing voltage on a part
- If target frequency is lower than that of the Fast part, power can be recovered by lowering the voltage of the Fast part
- Optimum performance and power can be achieved by centering the part around the target frequency

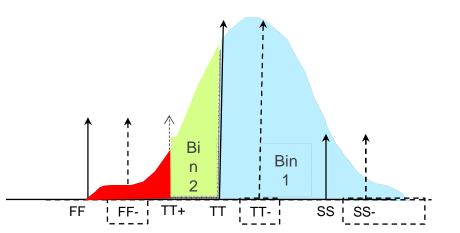
Process and Yield Management

- Foundry process is well-controlled
- 3σ signoff is extremely conservative
- Process and yield management can yield power and performance improvements
 - Shift process by 1σ
 - Discard parts outside 2σ (4.6% yield loss)

Power Management Case Study

- Customer requires maximum total power dissipation to not exceed 40W
- Tapeout ready database power at FFG, 1.05V, 105C is 66.58W
- Assumptions:
 - Typical voltage at 1V
 - Voltage regulator tolerance is ±50mV
 - IR Drop is 50mV
 - Operating frequency of 600MHz
- How do we meet customer's power target?

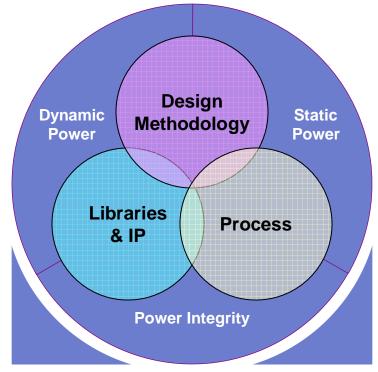
	Total	Dynamic	Leakage
	(W)	(W)	(W)
Logic	35.02	25.74	9.28
Memory	20.78	7.76	13.02
CAM	3.24	1.17	2.06
SerDes (AVDD)	7.48	6.19	1.29
IO ring + rest	0.08	0.07	0.01
Total	66.58	40.93	25.65


Power Management Approach

- Any strategy for power reduction to achieve 40W requires
 - Use of two power supplies
 - Power supply for SerDes (1V typical)
 - Power supply for Core
 - Lower frequency operation
- Core supply voltage tolerance should be as low as possible
 - Customer is unwilling to reduce voltage tolerance below 50mV
- Minimum core voltage is 0.81V (memory VDDmin)
- Use IR drop based on actual data from power analysis
 - 30mV simulated at 125C with >100W chip power (FF, 1.05V, 125C)
 - 15mV assumed for 105C with < 50W chip power (linear scaling)

Power Management Solution

- Operating Frequency is 450MHz
- Separate power supplies for SerDes and Core
- SerDes VDD = 1V ±50mV
- Two bins, bins separated at TT
- Process skewed by one sigma
- Bin 1 (TT to SS-)
- Core VDD = 0.93 ±50mV
- Power at TT, 0.98V, 105C <u>35.96W</u>
- Worst timing at SS-, 0.865V, -40C
- Bin 2 (TT+ to TT) No yield loss
- Core VDD = 0.875 ±50mV
- Power at FFG-, 0.925V, 105C 40.2W
- Worst timing at TT, 0.81V, -40C
- Bin 2 (TT+ to TT) 2.1%yield loss
- Core VDD = 0.875 ±50mV
- Power at TT+, 0.925V, 105C 36.35W
- Worst timing at TT, 0.81V, -40C



Power Management System Summary

- A complete system approach from concept to production
 - Lower dynamic and static power
 - Power integrity ensured
- Leveraging the best process, IP, libraries, power aware tools and power management methodology
- Power management solutions complement traditional EDA solutions

Power Management System

Intelligent Power Management Delivered

Enabling Your Silicon Success™