Power Management
as I kinew LE

Jim Kardach

Q Q 0 © © © 0 9 O

Agenda

Philosophy of power management

PM Timeline

Era o{ 0S ‘Speﬁbﬁ,{: PM (OSSPM)

Era of 0S independent PM (OSIPM)

Era of 0S Assisted PM (APM)

Era of 0S & hardware cooperative PM (ACPI)
Non-PM (taking advantage of P=CV*F)

Era of Indirect PM

Era of behavioral PM

Philosophy of PM

o Desigi things to work @f&&i@.&r\ﬁj
o Desigh things to do nothing aﬂ:iaemﬁv

o Inktel influences
o Dont impact performau&e
o Dont break anything
o Products were designed for desktop/
server and modified for mobile
(until ~2010)

Moore’s Law

o In the old days, mobile processors would get a Moore’
law kicker
o Inikial 3%6/456/Penkium/... would be a new micro-
architecture
o the mobile version (a year later) would be a
modified version on a shrink process
o Voltage reduces, Frequency increases,
capacitance decreases (# number of devices
increases, geometry halves)
o Free power reduction (P = CV f’)
o P = 1/2x(0.54*CY3.3/5xV) (1xF) =
1/2%0 85xCx\ *F
o We would complement this with architectural changes to
reduce platform power
o Over time:
o Voltage drop would decrease (tough to g0 below V)
o Capacitance would not drop as much
o interconnect capaci&ance qgoes up
o number of devices during shrink (“tick”) would
ncrease
o Would start using different size LE to control
lealkage Vs, speed

4

Ratio

0.9

0.8

0.7

0.6

LE Ratio

¥ Process Ratio

10 100 1000

LE (nm)

Timeline of PM work

192’6 19%9 1993

S I ST R Y R e = - e

bk ﬂV T 4 R At e
}};{' ,3(i o RS el

7 o

koo G T Y o WIFC G &
= 1992 4‘?65[«/ 1996 Qe&mned s:?'
“‘2%/ ewesL/ W Mobile
Ao SMI Tritown

365X ATM

0S Specific PM
(F:r@. '92)

o Put things i a Llow power mode
when idle
o Turn them back on when needed

@ lIssues
o Power Management software was
d@.pev\d@\& on the 0S & HW spe&b‘fm
drivers
o Things were very un-reliable

6

05 independent PM (1)
‘92-"93 ish

o Goal:
o “Hardware Like” Power management that ships with the notebook
and works o any 0S
o Enable Suspehci/ﬁesu,me, long ba&&erj Life
o A software based architecture was enabled through new platform/
CPU feature
o System Management Mode (SMM)

o A System Management Interrupt enabled execution of CEM
firmware within a new operating mode (regardless of what
the system was doing Previ.ou,stv)

o A hnew RSM instruction that would resume the CPU back to
whal it was previcusly doing

o OEMs could write firmware to respond to “power
management events” that would then turn devices on or off

o The OEM could deliver the feature as part of the noteboolk
firmware, and the code would work regardless of the 0S
ruhning

o Enabled turning devices on/off, and suspending/resuming the
entire platform

CPU starts executing
B SMI code
Countdown
Linmer will reload upon
~omparator makch

When timer fires,
sebs status bik and
1““‘?‘7"?’39 W Asynch SMI

Reqister to store
devices 1/0

Idle Time

Save Device
State

Determine 1/0O Address "“

Idle 1/0 Address

. Turn off device
Comparitor

CLK Idle Timer Asynch SMI

Disable Idle
Enable Timer

Or fire {’ Enable I/O trap
countdowin timer

reaches zero

CLK >

Comparator will

Lire when 1/0 is issued
~Sibhin range

On/Off# ®—~

o Each device would have a set of “shadow registers” with a timer. The notebook
would enable an idle time, and when this expireci the device would be turned

off

¥

SMI Based PM (Trap, 3)

e g When , N meering

Status

Synch SMI

Turn On Device

I/0 Address ®—>

Determine

Active
Restore State

Comparitor

Synch SMI

Enable Disable /0
Trap Timer

Enable I/0
Timer

I/0O Address >

fire when 1/0 is issued

RSM and

restart I/0

Device
Control

On/Oftt ®—{

o For activity its the reverse, a match to the I/0 address would fire an synch
SMI which would turin on the device, restore its context, and then re-start the

1/0 access after the RSM inskruction.,

0S independent PM (4)
'92-'93 ish

o 0S Lmdepemden& Suspemd/ Resume
o Used SMI to susyemd system
o STR - H“QP& DRAM pomered
o STD - stored DRAM/context to
HDD
o Used RSM to restore a resumed
svs&&m

10

0S &mdapemdem& PM (8)
& '92-93 ish

o Power Management just worked, and re_iiabtj (versus the
previous skuff)
o regardless of 05 (DOS, Windows, Unix, ...)
o allowed GEMs to ship PM with the box, and to write PM
code once
o Enabled a robust suspend/resume feature
o SMI scaled beyond power management (bug fixes, new
features, ...)

o Policy was based on what the HW knows, which is very low
level (1/0, memory accesses and E,M&errupf:s)
o The hardware doesnt understand whak activity is
impor&ah& or not
o CPU was Poorbj power managed
o Could ov\i:j divide the clock
o There were artifacts
o Suspena&/ﬁ{esume also suspena&ed time

1l
LIS

0S independent PM (4)
'92-'93 ish

o Why 9o below the 0S?

o When we started Microsoft was too
busy fixing DOS and creating Windows
to be bothered with PM

o For a group focused on por&abiﬁ
PLQE&fOrms, having a power management
solution was our top priority

o Decision was ko move forward without
Microsoft and build something that
would work reqgardless of the 0S

12

0S Assisked PM
~93 ish

o With the first samples of the 3%65L platform, to fix the artifacts we
needed an interface to communicate between the 0S and hardware,

o Things like

o I've just resumed, you might want to
o check the time (RTC) and update f necessary
o Indicate the level of activity of the 05
o If the 05 is really idle, the hardware can do very
agqressive PM
o If the 05 is really busy, the hardware can turin off PM ...
o Resulted in the creation of Advanced Power Management (APM)

o Intel, Phoenix (BIOS) and Microsoft worked on an API that
allowed communicabtion between the 0S5 and hardware (the SMI
Llayer)

o Solved most of the major artifacts

o 05 notification of power states, transitions, pending transitions
(battery about to die, ...)

o Update time

e 05 policy (wake on events via 05 conbrols)

13
LIS

0S & hardware cooperative PM
‘98 ish

o Goal:
o Develop an architecture that would
work with any 0S and was exkensible
o Make platform PM wore robust
° M the CPU much more aggressively
o If the 05 does not support 05 TM, then
enable a fallback ko the SMI based PM
o The Advanced Confiquration and Power
Interface (ACPI) specification was
created

14

ACTI Architecture

Kernel = (OSPM S stem Code

e

Device ACPI Driver/AML
"DT‘?/@‘ Interpreter
ACPI ACPI ACPI
Reqisters BIOS Tables
Platform Hardware > BIOS

o ACPI is an interface specification (deals with the red arrows and creates
the red blocks)
o ACPI Registers perform defined functions that the 05 ACPI driver own
o ACPI BIOS provides a means for the 05 to communicate to the PM
hardware
o ACPI Tables allow the OEM to write PM code in a mulki-threaded
language in a safe environment (the 05 AML interpreter)

18
LIS

ACTI Architecture

o AC?PI nformatiz.eci Ehe &ermimatogv
and svs%em skakes

16

ACTI Architecture

Vdd

-

On/Off# ®—{

()

Device
Control

o All of the uhique power management electronics were enumerated in
tables
o Each defined object an have a power resource associated with it
o The 0S5 just grabs the device object and if it wants to
o Turn the device ON, execute the _ON method
o Turnh the device OFF, execute the _OFF method
o Greb status of the device, execute the _STA wmebthod
o Note that the existing SMI hardware could be used to control device
power
o Additional support of ACPI required creating the ACPI tables with
the appropriate methods

17

ACTI Architecture

o BT

o Preempt Interrupt (Used in preemptive Operating Systems)
o A regular interrupt that is used by the 05 to schedule work for
a given CPU/thread
o Upon interrupt, kerhel schedules work
o When work is done it execubes the HLT instruction
o In ACPI, the 0S looks to see the time kill the nexk Preemp&
interrupt, and chooses a low power state to go into (C1, C2 or C3).
o higher number is lower power and longer exit latency
o Prior to ACPI you could slow the CPU to §0%, with C-stakes a
bypical CPU at idle will be in a low power state more than 99% of
the time,
o Active CPU/thread might have §0% Co state, ...

1y
LIS

Speed Step,
Nown-Power Mahnagement

Power Vs. Voltage Vs. Freq

T 2“
Power = CxV F
F‘raquem:j Ls somewhat Linear ko

Highest

Performance ‘
\V/ & &O\SE W \

o As your raise the voltage, the
maximum frequency goes up

Most Efficient operating point is
the maxinmum {requ,enc:j ak
minimum voltage

o Other than non-linear events | Frequency
Performance States (P-states)
were added to allow the 0S5 to
dynamically modify the

operating voltage and frequency
of the CPU

19

Indireck PM

o Sowmetimes its not the power your
buriing, but the power you are
causing others to burn on your
behalf

o Crying babies

R0

Power of an idle Bluetooth radio
(e connected to a wevbcmrd)

— =~ Sy P L S

o Bluetooth radios are very low power, but use USB as the host interface
o USB host controller is very Llow power

o Spec says at full load it consumes less than 100m!
o Bubk USB is a Foited architecture, the bluetooth radic cant tell it when it has an

event, the interface polls it
o The USB host controller has a task List it must read to poll the Bluetooth
radio, to see if it has any work
o Must access memory o

Indireck PM

o USB, PCle, ...
® Upciaﬁivxg existing standards to
have wnice idle behavior
o No m:&ivi&ej unless there is real
WOT ke

R2

Behavioral ¥M

Power Off
. (Idle Windows)

Power On
(Active Windows)

o Modifying system behavior when idle in order maximize
PM opportunity

o Goal was to turn-off the power to the entire system
similar to how we power management the CPUs C-states

o At idle, not much activity (random interrupts and DMA)
o If we could re-arrange this activity so it happens
together, then we can shut everything off

3
LIS

Behavioral M

MY R T T
oo PAALATRET AT 3

& Main Issues
o Im&errup&s
o Periodic interrupts (align them)
o event based im&errup&s
@ DMA
o %vpitattj caused bv a FIFQ beLmQ
full

R4

Behavmrai. ?M

Bus Cvdes

o Solution spaces

o created new abtributes for interrupts
allowing non-critical to be deferred b:j a
certain time

o Any activity indicates to all resources to
malkee activity U needed
o Kick off pending interrupts
o kick off pending DMAs

o This self synchronizes resources

RS
LIS

o Over 27 years, notebooks have improved immensely,
o IBM Convertible April 3 19%6

o 13 Lbs, $199s5
o sub 1 MIP, 477MHz ¥0C¥¥, 2§6ijkes RAM, small screen, no HDD

o ¥ hour battery Life with 23 Whr battery
e 2.%¥75 W Average power @€ idle
o My Apple Macbook Air (2014 Haswell)

o 3 1b, $1,749
8 7000+ MIPS, Haswell CPU, ¥ G—bjf:e.s of DRAM, 13" screen, §12 GByte $SD

o 12 hours ba?:?:erv Life with §4 Whr ba&&erj
o 4.5W Average power ol baEEerj life test
o “3W idle with baclklight
o ~125mWW idle backlight off

o The same philosophy applies
o Desigih things to work e{f&tie_mﬂj
o Design things to do nothing e.ﬁicieh&i.v

6

