
Power Management
as I knew it

Jim Kardach

1

Agenda

Philosophy of power management
PM Timeline
Era of OS Specific PM (OSSPM)
Era of OS independent PM (OSIPM)
Era of OS Assisted PM (APM)
Era of OS & hardware cooperative PM (ACPI)
Non-PM (taking advantage of P=CV2F)
Era of Indirect PM
Era of behavioral PM

2

Philosophy of PM
Design things to work efficiently
Design things to do nothing efficiently

Intel influences
Don’t impact performance
Don’t break anything
Products were designed for desktop/
server and modified for mobile
(until ~2010)

3

Moore’s Law
In the old days, mobile processors would get a Moore’s
law kicker
Initial 386/486/Pentium/… would be a new micro-
architecture

the mobile version (a year later) would be a
modified version on a shrink process

Voltage reduces, Frequency increases,
capacitance decreases (# number of devices
increases, geometry halves)
Free power reduction (P = CV

2

F)
P = 1/2*(0.84*C)(3.3/5*V)

2

(1*F) =
1/2*0.55*C*V

2

*F
We would complement this with architectural changes to
reduce platform power
Over time:

Voltage drop would decrease (tough to go below Vt)
Capacitance would not drop as much

interconnect capacitance goes up
number of devices during shrink (“tick”) would
increase
Would start using different size LE to control
leakage Vs. speed

LE Ratio

Ra
ti
o

0.6

0.7

0.8

0.9

1

LE (nm)

10 100 1000

Process Ratio

4

Timeline of PM work

2013
Haswell

1986

OS Specific
PM

OS independent
PM

C286/
376/
386SX

1989 1993

386SL/
SMI

486SL/
…

APM

OS Assisted
PM

1995

OS Cooperative
PM

Non-PM

1997 2003

Mobile
Triton

…
ACPI

~2000

Bluetooth

Indirect PM

Behavioral
PM

2008

1992 1996

2012

Retired

~27 years

5

OS Specific PM
(pre ’92)

Put things in a low power mode
when idle
Turn them back on when needed

Issues
Power Management software was
dependent on the OS & HW specific
drivers
Things were very un-reliable

6

OS independent PM (1)
’92-’93 ish

Goal:
“Hardware like” Power management that ships with the notebook
and works on any OS
Enable Suspend/Resume, long battery life

A software based architecture was enabled through new platform/
CPU feature

 System Management Mode (SMM)
A System Management Interrupt enabled execution of OEM
firmware within a new operating mode (regardless of what
the system was doing previously)
A new RSM instruction that would resume the CPU back to
what it was previously doing
OEMs could write firmware to respond to “power
management events” that would then turn devices on or off

The OEM could deliver the feature as part of the notebook
firmware, and the code would work regardless of the OS
running
Enabled turning devices on/off, and suspending/resuming the
entire platform

7

SMI Based PM (Idle, 2)

Each device would have a set of “shadow registers” with a timer. The notebook
would enable an idle time, and when this expired the device would be turned
off

8

Register to store
devices I/O

Comparator will
fire when I/O is issued

within range

Countdown
timer will reload upon

comparator match

Or fire if
countdown timer

reaches zero

When timer fires,
sets status bit and

generates SMI

Comparitor Reload

Idle Time

I/O Address

I/O Address Idle Timer Asynch SMIAND

Enable

Status

x
x

x

CLK

CLK

Determine
Idle

Asynch SMI

Save Device
State

Disable Idle
Timer

Turn off device

Enable I/O trap

RSM

CPU starts executing
SMI code

Device

On/Off#

Vdd

Comparitor

I/O Address

I/O Address
Synch SMIAND

Enable

Status

Determine
Active

SMI Based PM (Trap, 3)

For activity its the reverse, a match to the I/O address would fire an synch
SMI which would turn on the device, restore its context, and then re-start the
I/O access after the RSM instruction.

9

Register to store
devices I/O

Comparator will
fire when I/O is issued

within range

When
Comparator fires, sets status

bit and generates synchronous
SMI

CPU starts executing
SMI code

Synch SMI

Turn On Device

Disable I/O
Trap Timer

Restore State

Enable I/O
Timer

RSM and
restart I/O

Device

On/Off#

Vdd

Device
Control

OS independent PM (4)
’92-’93 ish

OS independent Suspend/Resume
Used SMI to suspend system

STR - kept DRAM powered
STD - stored DRAM/context to
HDD

Used RSM to restore a resumed
system

10

OS independent PM (5)
’92-’93 ish

Pros
Power Management just worked, and reliably (versus the
previous stuff)

regardless of OS (DOS, Windows, Unix, …)
allowed OEMs to ship PM with the box, and to write PM
code once

Enabled a robust suspend/resume feature
SMI scaled beyond power management (bug fixes, new
features, …)

Cons
Policy was based on what the HW knows, which is very low
level (I/O, memory accesses and interrupts)

The hardware doesn’t understand what activity is
important or not

CPU was poorly power managed
Could only divide the clock

There were artifacts
Suspend/Resume also suspended time

11

OS independent PM (4)
’92-’93 ish

Why go below the OS?
When we started Microsoft was too
busy fixing DOS and creating Windows
to be bothered with PM
For a group focused on portable
platforms, having a power management
solution was our top priority
Decision was to move forward without
Microsoft and build something that
would work regardless of the OS

12

OS Assisted PM
~93 ish

With the first samples of the 386SL platform, to fix the artifacts we
needed an interface to communicate between the OS and hardware.

Things like
I’ve just resumed, you might want to

check the time (RTC) and update if necessary
Indicate the level of activity of the OS

If the OS is really idle, the hardware can do very
aggressive PM
If the OS is really busy, the hardware can turn off PM …

Resulted in the creation of Advanced Power Management (APM)
Intel, Phoenix (BIOS) and Microsoft worked on an API that
allowed communication between the OS and hardware (the SMI
layer)

Solved most of the major artifacts
OS notification of power states, transitions, pending transitions
(battery about to die, …)
Update time
OS policy (wake on events via OS controls)

13

OS & hardware cooperative PM
’95 ish

Goal:
Develop an architecture that would
work with any OS and was extensible
Make platform PM more robust
PM the CPU much more aggressively
If the OS does not support OS PM, then
enable a fallback to the SMI based PM

The Advanced Configuration and Power
Interface (ACPI) specification was
created

14

ACPI Architecture

ACPI is an interface specification (deals with the red arrows and creates
the red blocks)

 ACPI Registers perform defined functions that the OS ACPI driver own
ACPI BIOS provides a means for the OS to communicate to the PM
hardware
ACPI Tables allow the OEM to write PM code in a multi-threaded
language in a safe environment (the OS AML interpreter)

15

Kernel OSPM System Code

Device
Driver

ACPI Driver/AML
Interpreter

ACPI
Registers

ACPI
BIOS

ACPI
Tables

Platform Hardware BIOS

ACPI
Technologies

Shipped
with

Computer

Shipped with
an ACPI

Compliant OS

ACPI Architecture

ACPI formalized the terminology
and system states

16

G0 (S0)
Working

G1
Sleeping

G3
Mech Off

Legacy

G2 (S5)
Soft Off

G1
Sleeping
G1

SleepingG1
Sleeping

S1
S2

S3
S4

ACPI Architecture

All of the unique power management electronics were enumerated in
tables

Each defined object an have a power resource associated with it.
The OS just grabs the device object and if it wants to

Turn the device ON, execute the _ON method
Turn the device OFF, execute the _OFF method
Get status of the device, execute the _STA method

Note that the existing SMI hardware could be used to control device
power

Additional support of ACPI required creating the ACPI tables with
the appropriate methods

17

Device

On/Off#
(DeviceP)

Vdd

Device
Control

PowerResource(Device, 0, 0) {
Method(_STA) {

 Return (GIO.DeviceP) // return bit 1
}
Method(_ON) {

Store (One, GIO.DeviceP) // turn on power
Sleep (10) // wait 10 ms

}
Method(_OFF) {

Store (Zero, GIO.DeviceP) // turn on power
}

}

ACPI Architecture

Preempt Interrupt (Used in preemptive Operating Systems)
A regular interrupt that is used by the OS to schedule work for
a given CPU/thread
Upon interrupt, kernel schedules work
When work is done it executes the HLT instruction

In ACPI, the OS looks to see the time till the next preempt
interrupt, and chooses a low power state to go into (C1, C2 or C3).

higher number is lower power and longer exit latency
Prior to ACPI you could slow the CPU to 50%, with C-states a
typical CPU at idle will be in a low power state more than 99% of
the time.

Active CPU/thread might have 50% C0 state, …

18

C0

Cx Cx Cx Cx

Speed Step,
 Non-Power Management

Power = C*V
2
F

Frequency is somewhat linear to
voltage

As your raise the voltage, the
maximum frequency goes up

Most Efficient operating point is
the maximum frequency at
minimum voltage

Other than non-linear events
Performance States (P-states)
were added to allow the OS to
dynamically modify the
operating voltage and frequency
of the CPU

19

1" 1.5" 2" 2.5" 3" 3.5"

Po
w
er
&

Vo
lta

ge
&

Frequency&

Power&Vs.&Voltage&Vs.&Freq&

Voltage"

Power"
Most Efficient
Operating Point

Highest
Performance

Operating Point

P-states

Indirect PM
Sometimes its not the power your
burning, but the power you are
causing others to burn on your
behalf

Crying babies

20

Power of an idle Bluetooth radio
(ie connected to a keyboard)

Bluetooth radios are very low power, but use USB as the host interface
USB host controller is very low power

Spec says at full load it consumes less than 100mW!
 But USB is a polled architecture, the bluetooth radio can’t tell it when it has an
event, the interface polls it

 The USB host controller has a task list it must read to poll the Bluetooth
radio, to see if it has any work

Must access memory
21

CPU Cache
Controller

Cache DRAM
Controller

DRAM
DRAM

DRAM
DRAM

System
Bus

Controller
Bus

Controller

USB Host
Controller

Bluetooth

CPU Cache
Controller

Cache DRAM
Controller

DRAM
DRAM

DRAM
DRAM

System
Bus

Controller
Bus

Controller

USB Host
Controller

Bluetooth 10mW

100mW

CPU Cache
Controller

Cache DRAM
Controller

DRAM
DRAM

DRAM
DRAM

System
Bus

Controller
Bus

Controller

USB Host
Controller

Bluetooth 10mW

100mW

DRAM Read

CPU Cache
Controller

Cache DRAM
Controller

DRAM
DRAM

DRAM
DRAM

System
Bus

Controller
Bus

Controller

USB Host
Controller

Bluetooth 10mW

100mW

Snoop
Impact idle system

power by 6W

Indirect PM

USB, PCIe, …
Updating existing standards to
have nice idle behavior

No activity unless there is real
work

22

Behavioral PM

Modifying system behavior when idle in order maximize
PM opportunity
Goal was to turn-off the power to the entire system
similar to how we power management the CPU’s C-states

At idle, not much activity (random interrupts and DMA)
If we could re-arrange this activity so it happens
together, then we can shut everything off

23

Activity Activity Activity

Power On
(Active Windows)

Power Off
(Idle Windows)

Behavioral PM

Main Issues
Interrupts

Periodic interrupts (align them)
event based interrupts

DMA
typically caused by a FIFO being
full

24

Interrupts

Bus Cycles

Behavioral PM

Solution spaces
created new attributes for interrupts
allowing non-critical to be deferred by a
certain time
Any activity indicates to all resources to
make activity if needed

Kick off pending interrupts
kick off pending DMAs
This self synchronizes resources

25

Interrupts

Bus Cycles

Idle
Window

Idle
Window

Idle
Window

Idle
Window

Idle
Window

Summary

Over 27 years, notebooks have improved immensely.
IBM Convertible April 3 1986

13 lbs, $1995
sub 1 MIP, 4.77MHz 80C88, 256Kbytes RAM, small screen, no HDD
8 hour battery life with 23 Whr battery

2.875 W Average power @ idle
My Apple Macbook Air (2014 Haswell)

3 lb, $1,749
7000+ MIPS, Haswell CPU, 8 Gbytes of DRAM, 13” screen, 512 GByte SSD
12 hours battery life with 54 Whr battery

4.5W Average power on battery life test
~3W idle with backlight
~125mW idle backlight off

The same philosophy applies
Design things to work efficiently
Design things to do nothing efficiently

26

