A 1ourney hroug intorys

xy wrom Nain hames

跤

Disclaimer

This presentation is based on personal Experiences over the last 40+ years in industry and
Is not presented on behalf of current or past employers.

Disruptions Come from Below!

RISC Systems
Desktop PCs
Notebooks
Bell's Law:
hardware technology, networks, and interfaces allows new, smaller, more specialized computing devices to be introduced to serve a computing need.

Smart Phones

Volume

The First 50 Years after

Shockley's Transistor Invention

MOORE'S LAW "Transistor density on integrated circuits doubles about every two years." *

1950s	1960s	1970s	1980s	1990s	2000s
Silicon Transistor	$\begin{gathered} \text { TL } \\ \text { Quad Gate } \end{gathered}$	8 -bit Microprocessor	32-bit Microprocessor	32-bit Microprocessor	64-bit Microprocessor
$\begin{gathered} 1 \\ \text { Transistor } \end{gathered}$	$\begin{gathered} 16 \\ \text { Transistors } \end{gathered}$	$\begin{gathered} 4500 \\ \text { Transistors } \end{gathered}$	$\begin{gathered} 275,000 \\ \text { Transistors } \end{gathered}$	$\begin{aligned} & \mathbf{3 , 1 0 0 , 0 0 0} \\ & \text { Transistors } \end{aligned}$	$\begin{gathered} \text { 592,000,000 } \\ \text { Transistors } \end{gathered}$

Microelectronic silicon computer "chips" have grown in capability from a single transistor in the 1950s to hundreds of millions of transistors per chip on today's microprocessor and memory devices. From the first documented semiconductor effect in 1833 to the transition from transistors to integrated circuits in the 1960 s and 70 s, this website explores key milestones in the development of these extraordinary engines that power the computing and communications revolution of the information age.

1958: Jack Kilby's Integrated Circuit
*Source: "Moore's Law: Raising the Bar" (Intel Corporation 2005)
Photo credits: Fairchild Camera and Instrument Corporation, Intel Corporation (Note that images are not to scale)
SSI -> MSI -> LSI -> VLSI -> OMGWLSI

Dennard Scaling

Device or Circuit Parameter	Scaling Factor
Device dimension tox, L, W	$1 / \mathrm{K}$
Doping concentration Na	K
Voltage V	$1 / \mathrm{K}$
Current I	$1 / \mathrm{K}$
Capacitance eA/t	$1 / \mathrm{K}$
Delay time per circuit VC/I	$1 / \mathrm{K}$
Power dissipation per circuit VI	$1 / \mathrm{K}^{2}$
Power density VI/A	1

Dennard's 1974 paper summarizes transistor or circuit parameter changes under ideal MOSFET device scaling conditions, where K is the unitless scaling constant.
The benefits of scaling : as transistors get smaller, they can switch faster and use less power. Each new generation of process technology was expected to reduce minimum feature size by approximately $0.7 \mathrm{x}(\mathrm{K} \sim 1.4)$. A 0.7 x reduction in linear features size provided roughly a 2 x increase in transistor density.
Dennard scaling broke down around 2004 with unscaled interconnect delays and our inability to scale the voltage and the current due to reliability concerns.
But our the ability to etch smaller transistors has continued spawning multicore designs.

1971: 4004 Microprocessor

- The 4004 was Intel's first microprocessor. This breakthrough invention powered the Busicom calculator and paved the way for embedding intelligence in inanimate objects as well as the personal computer.

Introduced November 15, 1971 $108 \mathrm{KHz}, 50 \mathrm{KIPs}$, 230010μ transistors

The First 25 Years of Microprocessors ~2000x Frequency \& > 2000x Transistors

197ルロ 8080 Mjeroprocessor

- Thse 8080 decarse the drajis of thee fijssit personaj corsipuier-irne Ajiajr, allegedly named for a destination of the Starship Enterprise from the Star Trek television show. Computer hobbyists could purchase a kit for the Altair for $\$ 395$.
- Within months, it sold tens of thousands, creating the first PC back orders in history
- 2 MHz
- 4500 transistors
- $6 \mu \mathrm{~m}$

- A pivotal sale to [BMJ's fiew personal corsipuiter clivisjon sracle the 3083 the brais of IBM's few hit product--the IBM PC.
- The 8088's success propelled Intel into the ranks of the Fortune 500, and Fortune magazine named the company one of the "Business Triurniphis of the Severities."
- 5 MHz
- 29,000 transistors
- $3 \mu \mathrm{~m}$

1981: First IBM PC

The IBM Personal Computer ("PC")

- PC-DOS Operating System
- Microsoft BASIC programming language, which was built-in and included with every PC.
Typical system for home use with a memory of 64 K bytes, a single diskette drive and its own display, was priced around \$3,000.
- An expanded system for business with color graphics, two diskette drives, and a printer cost about $\$ 4,500$.
"There is no reason anyone would want a computer in their home." Ken Olsen, president Digital Equipment Corp (1977)

1979: Motorola 68000

1984: Apple Macintosh

The 68000 became the dominant CPU for Unix-based workstations from Sun and Apollo

It was also used for personal computers such as the Apple Lisa, Macintosh, Amiga, and Atari ST

1985: Intel386™ Microprocessor

- The Intel386 ${ }^{\mathrm{TM}}$ microprocessor featured 275,000 transistors--more than 100 times as many as the original 4004. It was a Initel's first 32-bit chip.
- The 80386 included a paging translation unit, which made it much easier to implement operating systems that used virtual memory.
- 16 MHz
- $1.5 \mu \mathrm{~m}$

RISC vs CISC WARS

Sun SPARC
 MIPS R2000, R3000, R4000, R6000, R10000 HP PA-RISC
 IBM Power and Power PC
 DEC Alpha 21064, 21164, 21264

In 1987, the introduction of RISC processors based on Sun's SPARC architecture spawned the now famous RISC vs CISC debates. RISC processors from MIPS, IBM (Power, Power PC), and HP (PA-RISC) started to gain market share.

- RISC was "better" for in order designs
- Out of order microarchitectures leveled the playing field
- Semiconductor Technology and Volume Economics matter!
- PC Volumes and Pentium Pro design changed the industry

The difference between theory and practice is always greater in practice than it is in theory!

1989：Intel486TM DX CPU Microprocessor

－The Irjiel4zónm processor Mココ the fijst io offer a ＂Jarge＂8kB 山rjjijed jusitivction arnd datia orj－chip cache arsd ars jutegrared filoatisjg－pojsit usjit．
－Due to the tight pipelining， sequences of simple instructions（such as ALU reg，reg and ALU reg，im） could sustain a single clock cycle throughput（one instruction completed every clock）．
－ 25 MHz
－1．2 M transistors
－ $1 \mu \mathrm{~m}$

1993: Intel $®$ Pentium ® Processor

- The Intel Pentium® processor was the superscalar $\times 86$ microarchitecture. It included dual integer pipelines, a faster floatingpoint unit, wider data bus, separate instruction and data caches
- Famous for the FDIV bug!
- 22 March 1993
- 66 MHz
- 3.1 M transistors
- $0.8 \mu \mathrm{~m}$

PC Performance Gets Interesting!

1995: Intel $®$ Pentium ® Pro Processor

- Intel Pentiym@ Proprocessor was designed to fue 32-bit server and workstation applications. Each processor was packaged together with a second 2 cache memory chip on the back-side bus.
- 5.5 million transistors.
- 1 November 1995
- 200 MHz
- $0.35 \mu \mathrm{~m}$
- $1^{\text {st }} \times 86$ to implement out of order execution
- Front side bus with split transactions
- The P6 micro-architecture lasted 3 generations from the Pentium Pro to pentium III
- The Pentium Pro processor sliahtly outperformed the fastest pisc microprocessors on inteqer benchmarks, but floating-point performance was significantly lower

1997-98: Intel® Pentium® II
 Processor

- The 7.5 million-transistor 0.35 $\mu \mathrm{m}$ Pentium II processor was introduced with 512 KB L2 cache in external chips on the CPU module clocked at half the CPU's 300 MHz frequency in a "Slot 1" SECC module.
- 1998: Intel Pentium II Xeon processors ($0.25 \mu \mathrm{~m}$ Deschutes) were launched with a full-speed custom $512 \mathrm{~KB}, 1$ MB, or 2 MB L2 cache using a larger Slot 2 to meet the performance requirements of mid-range and higher servers and workstations

Driving PC Technology Higher

1998: Intel® Celeron ® Processor

- The Intel $®$ Celeron $®$ processors were designed for the sub $\$ 1000$ Value PC market segment in response to Cyrix 6x86 (M1)
- The first Celeron processor (Covington) in April 1998 was just a 266 MHz Pentium II without a L2 cache
- Mendocino: First x86 with integrated L2 cache -128 KB
- 19M transistors
- 300 MHz
- $0.25 \mu \mathrm{~m}$
- 24 August 1998

Making PCs More Affordable

Clock Frequency Uber Alis

1999: AMD Athlon

Won the Race to 1 GHz

1999: Intel@ Pentium@ IT Processor - 0.18 1 m

- 25 Oct 1999
- Integrated 256KB L2 cache
- 733 MHz
- 28 M transistors
- 1st Intel
microprocessor to hit
1 GHz on 8-Mar2000, a few days after AMD Athlon!

2000: Intel® Pentium@ 4 Processor - 0.18 1 m

Desktop Processors Not Mobile Friendly!

2001: Intel® Pentium® 4 Processor - $0.13 \mu \mathrm{~m}$

- 27 August 2001
- 55 million transistors
- 2 GHz
- 512KB L2 cache
- In 2002 Intel released a Xeon branded CPU, codenamed "Prestonia" with Intel's HyperThreading Technology
- 14 Nov 2002: 3.06 GHz
- 23 June 2003: 3.2 GHz

Simultaneous Multi Threading Improves Throughput Performance

2003: AMD Opteron - First 64 bit x86

64 bits Comes to PC Platforms

Banias

2003: Intel® Pentium® \mathbb{M} Processor

- The first Intel $®$ Pentium $® M$ processor, the Intel $® 855$ chipset family, and the Intel $®$ PRO/Wireless 2100 network connection were the three components of Intel $®$ Centrino ${ }^{T M}$ mobile technology, with built-in wireless LAN capability and breakthrough mobile performance. It enabled extended battery life and thinner, lighter mobile computers.
- Dedjcared Processor Opitirsized for Notebook Segrnent
- 12 March 2003
- 130 nm
- 1.6 GHz
- 77 million transistors
- 1 MB integrated L2 cache

The move away from core frequency to performance begins!

Post Dennard Scaling

THE MULTICORE ERA

NEW DEVICE STRUCTURES
ENERGY EFFICIENCY

Getting Benefits of Moore's Law Across all Value Vectors

Active Power per Function
\$/ Transistor (Normalized)

Lower Power

MOORE'S LAW

$200120032005 \quad 2007 \quad 2011$

Something New Needed Every Two Process Generations to Keep Moore’s Law Going

Strained Si

$2^{\text {nd }}$ Generation
Strained Si

High K/
Metal Gate

$2^{\text {nd }}$ Generation High KIMetal Gate

Tri-Gate

2005: First Dual Core Opteron

Beginning of the Multi-Core Era!

2005: Last Netburst

 Microarchitecture Core (65nm)

Last of the Power Hungry Speed Demons!

Increasing Energy Efficiency

Specint_rate2000; source: Intel; some data estimated.

2006: Intel's 1st Monolithic Dual Core

- January 2006
- Intel® Core™ Duo Processor
- 90 mm²
- 151M transistors
- 65 nm
- First Intel processor to be used in Apple Macintosh Computers

The Convergence to Multiple Mobile Cores Begins Finally!

Why Multi-Core?

Energy-Efficient Performance!
Dual-Core

Relative single-core frequency and Vcc

- End of Dennard Scaling
- Instruction Level Parallelism harder to find
- Increasing single-stream performance often requires non-linear increase in design complexity, die size, and power

Moore's Law Enables Microprocessor Advances

$1.0 \mu \mathrm{~m} 0.8 \mu \mathrm{~m} 0.6 \mu \mathrm{~m} 0.35 \mu \mathrm{~m} \quad 0.25 \mu \mathrm{~m} 0.18 \mu \mathrm{~m} 0.13 \mu \mathrm{~m} 90 \mathrm{~nm} 65 \mathrm{~nm}$

Intel 486^{TM} Processor

Pentium ${ }^{\circledR}$ Processor

Pentium ${ }^{\circledR}$ I/IIII
Processor

Pentium ${ }^{\circledR} 4$
Processor

Intel® Core $^{\text {TM }}$ Duo
Processor
Intel® Core $^{\text {TM }} 2$ Duo Processor

New Designs serve High End first and waterfall to more mainstream segments as die size decreases in subsequent nodes

2006: Itanium 2: First Billion Transistor Dual Core Chip (90nm)

1.72 Billion Transistors
$\left(596 \mathrm{~mm}^{2}\right)$

From 2300 to >1 Billion Transistors In <40 Years of Moore's Law

Moore's Law video at

More than 1 Billion Transistors in 2006!

MuftioCope Era

Who Has The Most Cores?

4 is Better Than 2!

2007: AMD Barcelona First Monolithic x86 Quad Core

$283 \mathrm{~mm}^{2}$ design with 463M transistors to implement four cores and a shared 2 MB L3 cache in AMD's 65 nm process

2008-9: Performance Race Gets Serious With Quad Core

AMD Barcelona

Intel Nehalem

Intel finally integrates Memory Controller and abandons shared Front Side Bus

Six Cores

2009: AMD Istanbul

2010: Intel Westmere

Mobile Computing Era

SIZE MATTERS

 SMALL \& LIGHT LOW POWER
The Smart Phone Era Is Redefining Computing

"The phone in your pocket will be as much of a computer as anyone needs".

- Dr. Irwin Jacobs, 2000

PC Market Shift

Continued smartphone momentum

$8 B$

cumulative smartphone unit shipments forecast between 2014-2018

smartphone installed base 2018 vs. 2014

Qualcomm Processor Progression

2015
Cure bit Quad + quad
Quad Core A57 CPUs
Adreno 430 GPU
Hexagon ${ }^{\text {TM }}$ V56 DSP
Integrated X10 LTE
DSDS and DSDA
4K capture and
playback
Up to 55 MP Dual ISP
camera

The future is more about Heterogenuous Computing Cores

Representative System Architecture

Smartphones demand more processing horsepower

While consuming little power

CPU scaling is reaching diminishing returns

CPU takes a small area in modern mobile SoCs

Most mobile tasks are more power efficient on other cores

Specialized hardware can be an order of magnitude more powerefficient than the CPU

Relative Power Consumption

For all-day usage, video should be done on a dedicated video engine

Mobile SoCs are made of many processing engines

Mobile Heterogeneous Computing Architecture

Mobile heterogeneous computing

A computing approach that intelligently uses fundamentally different types of processing engines

Assign right task for the right processing engine

Specialization is key for mobile

Each processing engine has its own strengths

The performance and power benefits of heterogeneity

Right task on the right processing engine

Character Recognition

Image Processing

Source: Internal Qualcomm technologies measurements on existing Snapdragon ${ }^{\text {M }}$ devices
Snapdragon is a product of Qualcomm Technologies, Inc.

Systems approach is needed for mobile solutions

High performance at low power and thermal

Power
optimization throughout the system

The Data Centers of Tomorrow Will Use the Same Tech Our Phones Do

By Peter Levine | Monday August 4, 2014

WIRED

Today, the mobile phone industry is where so much innovation has been concentrated-resulting in an entirely new class of components created just for this smaller form factor: flash memory, smaller CPUs, networking hardware, and so on. Which means lightweight processors (such as ARM) and low-cost, lowpower mobile components are now becoming the foundation of the next-generation datacenter.

BROADCOM BARES MUSCULAR ARM
Quad-Issue ARMv8 CPU Targets Xeon-Class Performance By Linky Gwemap (October 21, 2013)

MICROPROCESSOR Report

insightful Analysis of Processor Technology
Thunder X Rattles Server Market
Cavium Develops 48-Core ARM Processor to Challenge Xenn

By Linkey Gwennap (fune 9, 2014)
Scanum
Applied Micro's X-Gene challenges for server processor market

Agpied Micr isests the chage to infitrate the 512 vithan server protensor matat whth APSM-bared ICE
 a 50% plos share of the sever prosessor mation
So whit if anf, we Appled Micro's seIng polits compared ts intera?
Fint and forematt theres the bushess motel
'Consethion is weat wein tringing' seys Gaurw Singh ip of techical trategy of Agpled Hicrio, in mast other matits thare ia very hesitly conpettan with matiein tifono cuitomens

Barcelona
Sepercomparting
Center
Centro Nacionul de Sopercongulacion

Intel juices up microserver speeds with thrifty Avoton chip

Summary: Intel is claiming to have made significant strides in performance and powe efficiency in the microserver market with its new Avoton system on a chip.

AMD Announces the Availability of 64-bit ARM Opteron Developer Kits

Where is The Industry Today?

- 14 nm is in production but ramping slower than previous generations
- Future Generations will be even harder!
- Costs per wafer increasing
- Capital, more process steps, increased mask costs
- Cost per transistor decreasing
- PC sales slowing; Server volume growing
- Mobile computing (Smartphones \& Tablets) \& IoT are driving growth at lower price points
- Moore's Law will slow down beyond 10 nm
- Economics, Physics, Materials, Power
- What is the best use for increased transistor density?
- Heterogenuous Processing Engines Everywhere?

What is Needed

Evolution of the Internet

$$
\square \begin{array}{cccc}
\square & \square & \square & \square \\
\square & \square & \square & \square
\end{array}
$$

Yesterday

$$
\square_{\square} \square^{\square-x}
$$

Today

