

Multi-Die Packaging – How Ready Are We?

EDPS 2015

Rich Rice ASE Group April 23rd, 2015

Agenda

• ASE Brief

- Integration Drivers
- Multi-Chip Packaging
- 2.5D / 3D / SiP / SiM
- Design / Co-Design Challenges: an OSAT Perspective
- o Summary

Brief Backgrounder

Established 1984, production commenced at flagship factory in Kaohsiung, Taiwan. Achieved global market leadership in 2004, surpassing all players in OSAT industry. Operations now at 12 facilities worldwide, serving multiple markets, applications, & geographies. >50K employees: Global team comprises operations, engineering, R&D, sales, & marketing. ASE Group overall revenue of \$8.4B in 2014, 14% over 2013. ATM* overall revenue of \$5.3B in 2014, 9% over 2013.

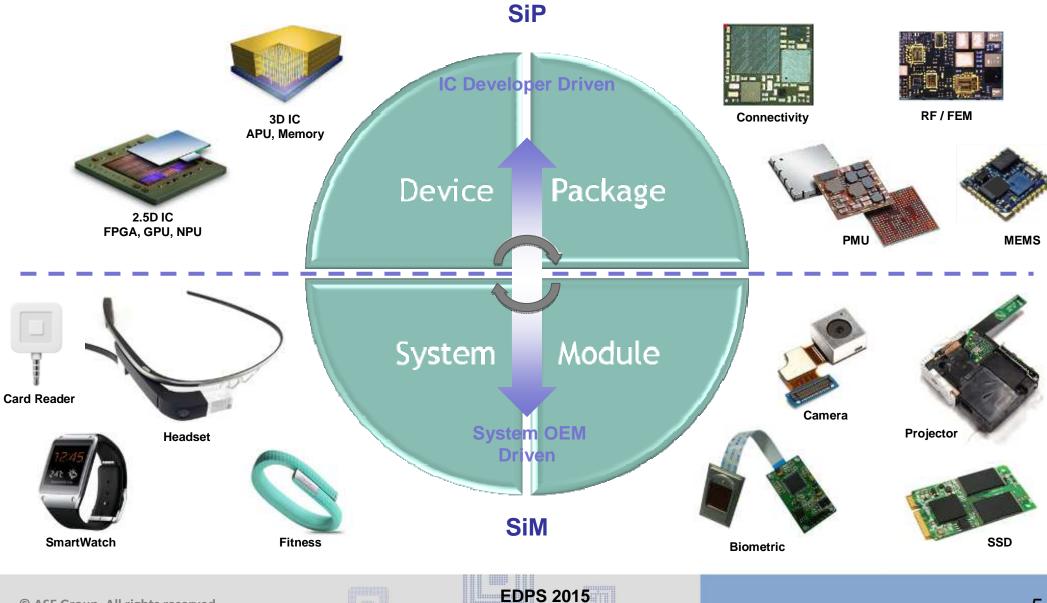
ATM*: Assembly, Test, Material

Integration Drivers

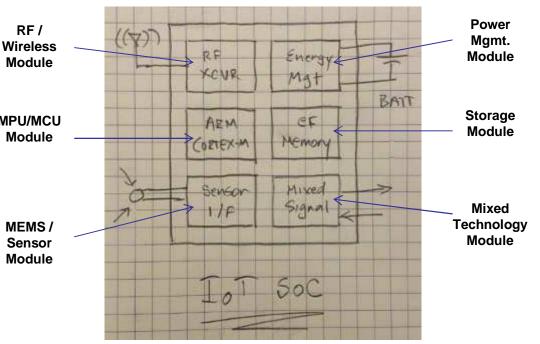
3

Value Chain Consolidation

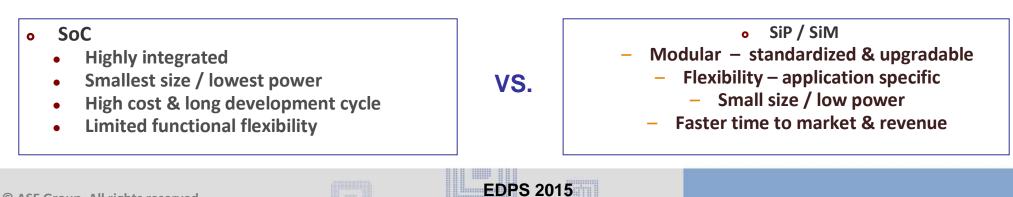
Creating Differentiation

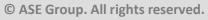


SoC-SiP-SiM Evolution



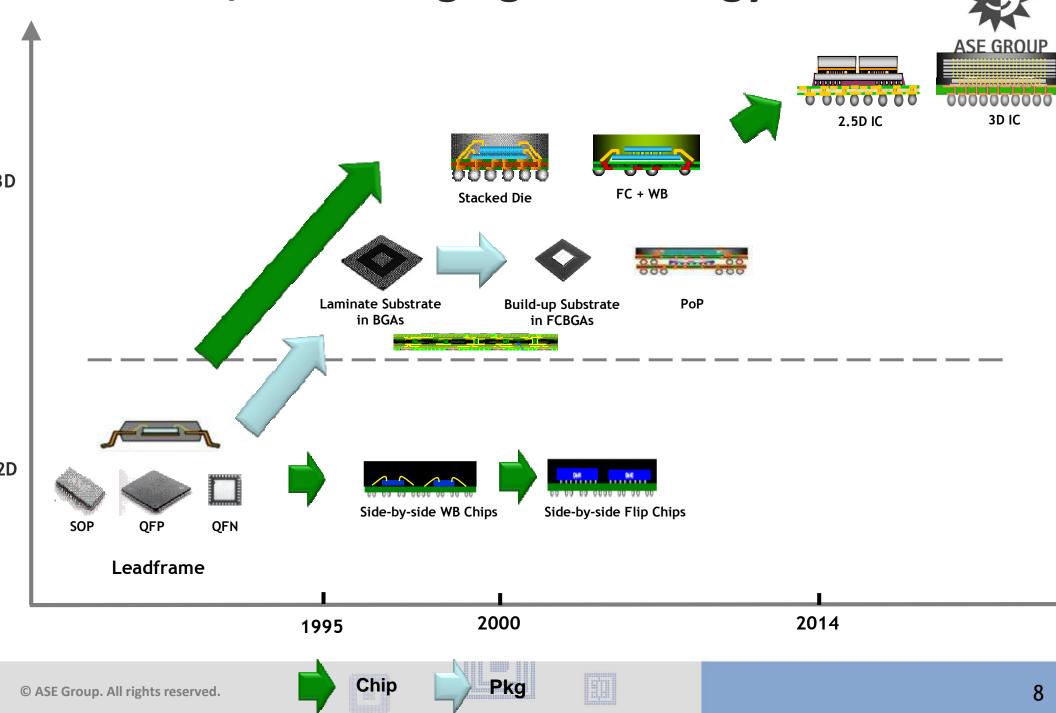
5


Basic IoT SoC / System


Source: Tyson Tuttle – CEO SiLabs

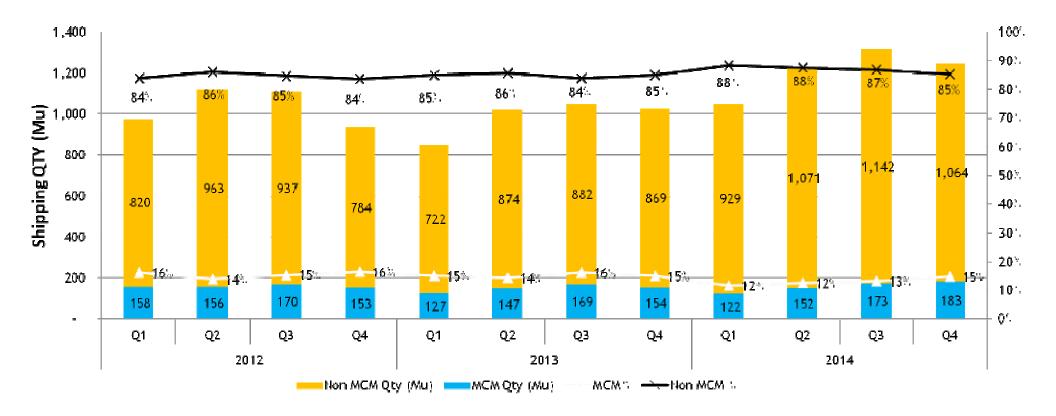
- Instrumented
 - Able to sense and monitor environment
- Intelligent
 - Capable of analytics
 - Can make decisions based on data
- Interconnected
 - Shares data through cloud
 - Interacts with people and other systems
 - Can remotely monitored and controlled
- Secured
 - Protects data from malware, theft or tampering

Multi Chip Packaging



7

2D & 2.5/3D Packaging Technology



Multi-Dice Loading Trend

• Data covers WB and Flip Chip products

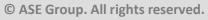
Year	2012			2013				2014				
Quarter	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
MCM Qty (Mu)	158	156	170	153	127	147	169	154	122	152	173	183
Non MCM Qty (Mu)	820	963	937	784	722	874	882	869	929	1,071	1,142	1,064
MCM %	16%	14%	15%	16%	15%	14%	16%	15%	12%	12%	13%	15%
Non MCM %	84%	86%	85%	84%	85%	86%	84%	85%	88%	88%	87%	85%
TTL Qty (Mu)	978	1,119	1,107	937	849	1,021	1,051	1,024	1,051	1,223	1,316	1,248

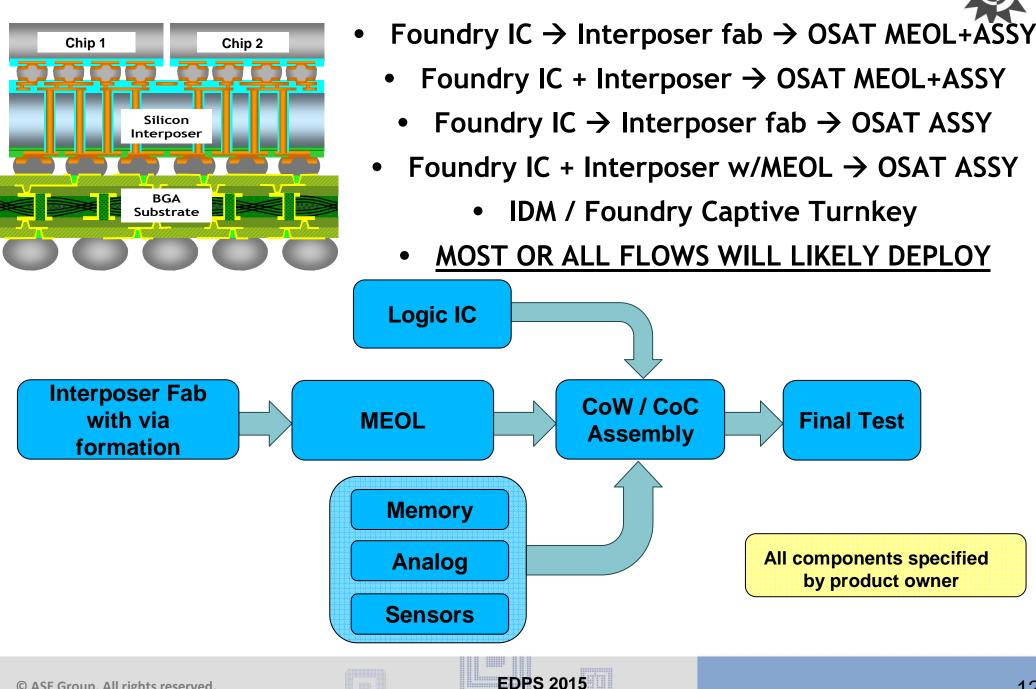
Yield Status

Incoming Die

- Standard inspections, same as single die
 - Probed before assembly
 - Assembly
 - ◆ 2 Dice : >= 99.9%
 - ♦ > 2 Dice : >= 99.5%
- Wirebond, Flip Chip, and combination of both
 - "Mature" subordinate die are commonplace

• Final Test


- Most customers are doing FT with BIST
 - Typical Yields : > 98.5%
- Very few customers do full functional testing on memory after assembly


2.5D / 3D / SiP / SiM

2.5D IC Ecosystem Models

Industry 2.5D / 3D IC Manufacturing Readiness

Product Type		Oritoria	300 mm Wafer Readiness					
		Criteria	Y2009	Y2012	Y2014			
Wafer Thinning / Grinding		50 µm						
Via Last	Via Etching	20 ~ 50 µm, AR 10						
	Via Isolation	20 ~ 50 µm, AR 10						
	Via Seedlayer	20 ~ 50 µm, AR 10						
Via First	Via Etching	5 ~ 10 µm, AR 10						
	Via Isolation	5 ~ 10 µm, AR 10						
	Via Seedlayer	5 ~ 10 µm, AR 10						
Thin Wafer Handling		50 µm		With Carrier				
Via Surface Finish		No Cu Dishing						
Re-distribution (Double Sides)		-						
Micro-bumping		30 µm Pitch						
TSV Wafer Probing & Testing		30 µm Pitch		50 um Now				
Wafer Singulation		-						
CtW/CtS Bonding		Solder / Micro Bump		тсв	Reflow			
Assembly		-						
Final Test		-						

Ready for Mass Production Ready for Qualification

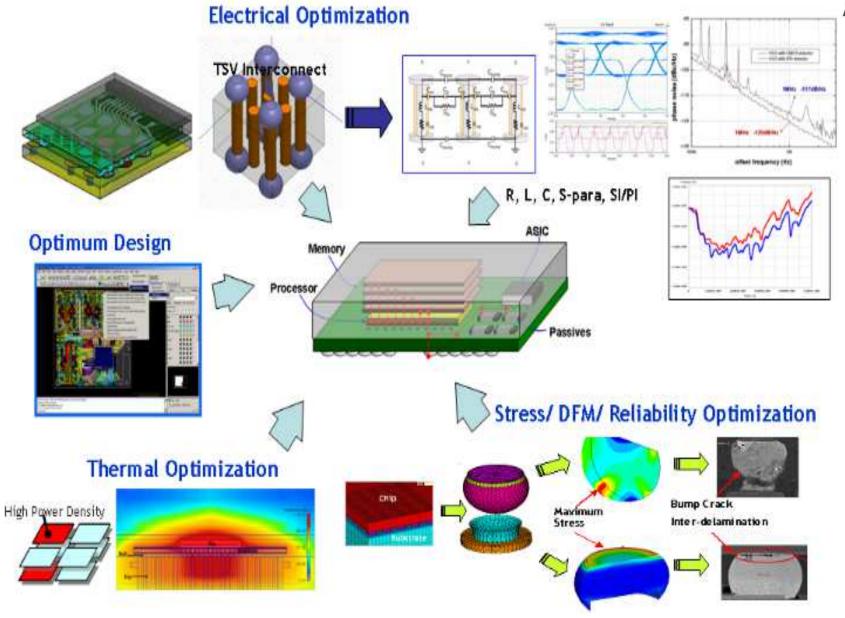
Ready for Prototyping

No Solution Yet

2.5/3D IC Test Challenges

ASE GROUP • Wafer Probing • Package Test Heterogeneous cores • Thinned wafer handling Logic + analog + memory » Grinding before/after test **Embedded** passive » Assembly flow vs. Test Embedded die • TSV test Assembly and test process flow » TSV defect integration » Double-sided wafer probing? • Die/wafer contact interface material Test Methodologies » Bond pads/ micro bumps/ KGD fault coverage TSV New fault types » Cu pillars DFT • Contact force of high I/O number vs System Level test wafer thickness » Probe Force Cost of test » Probe material One insertion/multi insertions • Fine Pitch **ATE or Customized Bench** » Area array pitch < 50um > 1000 contacts Fundamental Study Capability Is Required Joint Development among IC Design/ for Assembly and Test Subcontractors Foundry/ Assembly & Test companies

EDPS 2015


Design and Co-Design: an OSAT Perspective

3D IC Concurrent Package & System Modeling & Validation

EDPS 2015

Summary

Summary

- Industry drive towards functional integration is at an all time high
- Multi chip packaging has been practiced in large volume, but simpler formats
- SiP, as well as 2.5/3D products, bring a heightened level of complication related to physical interconnect, cost, and business models to produce them.
- Modeling and simulation must be enhanced to enable 2.5/3D products due to sub-system and system level performance requirements

Thank You

www.aseglobal.com

