

Verification and Extraction of 3D Stack Component Interactions

Dusan Petranovic

Interconnect Modeling Technologist Design2Silicon Division

dusan_petranovic@mentor.com

Outline

- EDA Challenges in 3D Stack Modeling and Design
 - Different phenomena: electrical, thermal, mechanical
 - Cross- domain integration
- 3D Stack Verification and Extraction
 - Stack verification flow
 - Extraction solutions
- Intra Die Component Interactions and Extraction
 - TSV to TSV
 - TSV to RDL
- Inter Die Interactions
 - Various bonding schemes
 - Analysis of die-to-die capacitive coupling impact
 - In context extraction

EDA Challenges in Modeling and Design of 3D Stacks

- Modeling
 - Different phenomena: electrical, thermal, mechanicals;
 - Interaction modeling
 - Tradeoff between needed accuracy and model complexity and flow integration
 - Consistency between different levels of abstraction

Design

- Design exploration/optimization tools, managing interactions and controlling parametric vield
- Cross-domain integration
 - ICs, Interposer, Package, Board
- Work on resolving issues related to multiple disconnected tools with no standard methodology/flow to synchronize and transfer design data between design disciplines and abstraction levels
- Standards needed for tool interfaces and data exchange format

Package

Time to Market

Expanding Calibre to the 3DIC Domain

- Calibre is the dominant sign-off tool for leading IDM, memory, fabless and foundries
 - Lowest Risk
 - Fastest Performance

(Source: Gary Smith EDA, November 2013)

- Expanding Calibre for 3DIC Verification & Analysis
 - Physical Verification
 - Parasitic Extraction
 - Thermal Analysis
 - Stress Analysis

Calibre 3DSTACK: Verification Flow

© 2011 Mentor Graphics Corp. All Rights Reserved **www.mentor.com**

MG Stack Verification Flow

Calibre 3DSTACK

- Verify with micro-bumps are physically aligned
- Verify proper electrical connectivity through interfaces

🎾 🖋 🔍 🧶 🔛 🕅 🖗 🔆 💠 📔 Find:			-	4 >		
Topcell TOPCELL_3DI, 10 Results (in 3 of 3 Check	(2)	E١	•	7		
🖾 Cell / Check	Results		23	ID	Vertices	Coordinates
E 🗙 Cell TOPCELL_3DI	10	12	1	× 1	4	(110.381 167.774) (110.381
—X Check external_check;;external_check	5		2	X 2	4	(110,381 170,01) (110,381 1
-X Check enclosure_check;:enclosure_check	2		3	× 3	4	(110,381 167,774) (115,8 16
K Check connectivity_check	3		4	X 4	4	(106.0 165.229) (106.0 174.
			5	X 5	4	(110,381 176,936) (115.8 18
IL: external_check::external_check		12	S.			

Calibre xRC/xACT3D

6

- Extract parasitics of the Dies and Interposer interconnect
- Insert provided TSV circuit into integrated

```
parasitics/TSV netlists, or extract TSV EDPS, April 2015
```


© 2011 Mentor Graphics Corp. All Rights Reserved www.mentor.com

Extraction solutions: TSV Modeling Approaches

Stand Alone TSV models

- Advantage: Easy to integrate into a flow ; Sufficient in many situations
- Challenges: Not adequate for high density, high frequency applications

Compact parametrized models

- Advantage: Can account for some interactions; Faster than FS
- Challenges :Hard to account for all situations, to parameterize for all important variables

Field solver approach

- Advantage: Most accurate
- Challenges: Performance; Integration

Case 1: TSV 3 and TSV 4 are not present in layout Case 2: TSV 4 is not present in layout Case 3: All 4 of the TSV's are present

© 2011 Mentor Graphics Corp. All Rights Reserved www.mentor.com

Fast Field Solver Based Solution

- Fast-Field Solver based solution extracts TSV parasitics and TSV to TSV couplings (capacitive and inductive)
 - Produces netlist consisting of frequency-independent linear elements.
 - Accurate vs. reference results
 - Order of magnitude faster than other field solvers

© 2011 Mentor Graphics Corp. All Rights Reserved www.mentor.com

Extraction of TSV to Interconnect coupling

- Model and extract TSV to interconnect extraction
- Full chip solution within 2% accuracy vs FS

Significant impact:

IADLE	1	
TSV-TO-WIRE COUPLING	FULL-CHIP	IMPACT.

Is TSV-to-wire included?	no	yes
Longest path delay (ns)	4.48	(5.08 (+13.4%)
Total power on TSV net (mW)	0.303	0.356 (+17.6%)
Total net switching power (mW)	2.42	2.50 (+3.3%)
Total noise on TSV net (V)	32.5	78.2 (+104%)

To Reduce the impact

reported in mW.

KOZ size (µm)	0.5	2.5	5
Longest path delay (ns)	5.08	4.95 (-2.6%)	4.77 (-6.1%)
Total power on TSV net	0.356	0.342 (-3.9%)	0.327 (-8.1%)
Total net switching power	2.50	2.47 (-1.2%)	2.45 (-2.0%)
Fotal noise on TSV net (V)	78.2	67.0 (-14.3%)	42.9 (-45.1%)

Table 6: Keep-out-zone impact on full-chip design. Power i Table 7: Guard ring impact on full-chip design with 2.5µm KOZ, Power is reported in mW.

Guard ring width (μm)	0	0.5	1.5
Longest path delay (ns)	4.95	4.98 (+0.6%)	5.01 (-1.2%)
Total power on TSV net	0.342	0.351 (+2.6%)	0.358 (+4.7%)
Total net switching power	2.47	2.475 (+0.2%)	2.479 (+0.4%)
Total noise on TSV net (V)	67.0	58.0 (-13.4%)	53.6 (-20.0%)

Inter die parasitic extraction in F2F bonding

- Two different scenarios for LVS/PEX to study impact of die-to die coupling capacitance
- Dies are connected F2F
- Each die has 6 metal layers
- w/s varies from 0.05/0.05u for M1 to 0.36/036
 (M5) and 1.8/1.8u (M6)
- Distance between the dies varied from 10u-1u

Individual die LVS/PEX Parasitics extracted separately Ignoring intra-die coupling

© 2011 Mentor Graphics Corp. All Rights Reserved **www.mentor.com**

Impact of die capacitive coupling

Impact on various capacitance components

■Impact of charge sharing on top metal coupling capacitance in the same die (M6-M6):

overestimated by >50% when the dies get close to 1 micron

■No impact (<1%) on lower layer capacitances M5-M5

Die to die coupling (CF2F1, CF2F2) becomes comparable to intra die coupling (M6-M6)

Impact on full chip noise and critical path delay

Significant delay impact on individual nets 10%-20%, depending on the design type

Significant impact on noise voltage , up to 80%

No impact on power

In Context Calibration/Extraction

- Interfaces will be owned by the specified dies

InFO WLP extraction example

- Extract the dies "in context"
- Do not netlist couplings; Fold them into top level capacitances
- Extract the package "in context" with the ground assumed at the board level
- Stitch the netlists

Incremental calibration

- The same die can be put in different environments
- The extraction rules already exist for different metal stacks
- To avoid a need for creating new rule decks incremental calibration can be used

www.mentor.com

EDPS, April 2015