Session 2: Multi-Die Design Challenges and Applications

Herb Reiter eda 2 asic

Brandon Wang Cadence

Dusan Petranovic Mentor Graphics

Rich Rice ASE

EDPS 2015 in Monterey, CA, April 23

The 3D IC EcoSystem Today and What's Next

Herb Reiter
President, eda2asic

EDPS 2015 in Monterey, CA, April 23

Agenda

- 1. Introductions
- 2. Multi-Die Applications
- 3. Die-Package CO-Design incl. Assembly Design Kit (ADK)
- 4. Other EDA Challenges
- 5. What's Next
- 6. Summary
- 7. Q&A

Importance of EDA Tools and Libraries

10-Apr-15

Multi-Die ICs Add To Today's Single Die Packaging Challenges

Power Integrity
Signal Integrity
Bumps Capacitance
Lead Inductance
IC Thermal Limits

•••

•••

Power ...and Interposer Thinner Die = Less Heat Flow **Heterogeneous Dice** Signals Signals Die to Die Interactions **KGD**, Test Coverage **Pkg Substrate** In Out **Electrical-Thermal Interactions** Heat Out **Thermo-Mechanical Forces** Thermal Limits of Dice, Substrate, Board & System Unit COST, Reliability, ...

Major Integration Alternatives

http://www.design-

reuse.com/articles/exit/?id=14887&url=http%3A%2F%2 Fwww.commsdesign.com%2Farticle%2FprintableArticle .jhtml%3FarticleID%3D196700054

eda2asic Interposer and 3D EcoSystem Partners

Si2, IPC, GSA, IEEE, JEDEC, MEPTEC, SEMI,...

Engineering Standards & Business Models

Cadence, Mentor, Ansys, Atrenta, eSilicon, Open Silicon, Rambus, Invensas, Promex, ipdia,... **Industry Organizations, Design Consultants**

System- and IC planning, -design and -verification

Hynix, Micron, Samsung,... and Die-level as well as block-level IP providers

Global Foundries, Jazz, TSMC, UMC,...

AMAT, EVG, HHT, Suess, Tokyo Electron,...

Amkor, ASE, SPIL, StatsChipPak,... Advantest, Teradyne,...

3M, DNP, Hitachi, Ibiden, IPDiA, Panasonic, Silex, ...

Opportunity Knocks

http://www.accenture.com/us-en/company/overview/advertising/Pages/index.aspx

2. Multi-Die Applications

Typical Access Latency in number of Cycles of a 4 GHz Processor

(cycle time = 250 psec)

Based on a presentation by

eda 2 asic

New Multi-Die Design Methods

□ 2.5D-IC

- Dice side-by-side and connected to an interposer with TSVs
- No TSVs in dice needed
- •TSVs on Interposer are 100 x 10 microns now
- Fast
- Low power
- Easy to cool every die
- Low NRE, little EDA
- Unit cost + interposer
- Widely deployed now

□3D-IC

- Dice vertically stacked and interconnected in the assembly process
- All but top die w TSVs
- •TSVs currently $50 \times 5 \mu$, 40×2 in development
- Faster
- Lower power
- Difficult to cool center
- Higher NRE, more EDA
- Medium unit cost
- In Memory Cubes now

☐ Monolithic 3D

- Circuitry vertically stacked. Wafers run 2+ times through fab
- Vias connect circuitry
- Vias between layers of circuitry only tens of nm
- Fastest
- Lowest power
- Cooling needs are less
- Highest NRE, most EDA
- Lowest unit cost
 V NAND is in Production
- In Development now

2.5/3D Application Examples

3D Memory Cubes from Hynix, Micron, Samsung in many Applications, e.g.:

Market Segment or Application	Key Benefits	Key Challenge(s)	PUBLICLY ANNOUNCED Projects
Computing	Speed <i>,</i> Bandwidth	Power-Density	Intel & Micron: CPU
Networking	Bandwidth, Latency	Power-Density	IBM & SEMTECH: ADC & DSP TSMC & Huawei: NPU
Graphics	Bandwidth, Power Savings	Power-Density, Component Cost	Nvidia & Hynix & TSMC: GPU AMD & Hynix & : GPU
Wireless/Mobile	Bandwidth, Power, Size	Component Cost	Samsung Tablet: Exynos 5 and DRAM stacked using Wide I/O 1
Industrial/Auto	Heterogeneous - Integration	Too new Reliability	&: Vision Systems
IoT Peripherals	Power, Size, Heterog. Integr.	Component Cost	: IoT Platform(s)
FPGAs	Gate Count, Power Savings	DesignComplexity, Component Cost	Xilinx & TSMC & SPIL: High-end FPGA Family

Pointers to Above Examples

■ Monolithic Flash Memories' Unit Cost and Speed becoming compelling Samsung strikes SSD drive deal with Google http://www.koreatimes.co.kr/www/news/tech/2015/03/133_176227.html
New 3D NAND flash will triple capacity of SSDs, Intel and Micron

http://www.pcworld.com/article/2902246/new-3d-nand-flash-will-triple-capacity-of-ssds-intel-and-micron-say.html

JEDEC and HMCC standardize TSV-connected Memory Cubes' Interfaces

Detailed (100+ pages) datasheets of memory cubes - for free downloading - available at:

HMC http://hybridmemorycube.org/files/SiteDownloads/HMC-30GVSR_HMCC_Specification_Rev2.0_Public.pdf

HBM http://www.jedec.org/standards-documents/docs/jesd235

Wide I/O 2 http://www.jedec.org/standards-documents/docs/jesd229-2

☐ Interposer-based Designs

XILINX FPGA family: https://ca.finance.yahoo.com/news/xilinx-delivers-industrys-first-4m-120000221.html

Intel/Micron: http://newsroom.intel.com/community/intel_newsroom/blog/2015/03/26/micron-and-intel-unveil-new-3d-nand-flash-memory

IBM/SEMTECH: http://www.semtech.com/Press-Releases/2010/semtech-and-ibm-join-forces-to-develop-high-performance-integrated-adcdsp-platform-using-3d-tsv-technology.html

TSMC/Huawei: http://www.extremetech.com/computing/190941-tsmc-announces-its-first-16nm-finfet-networking-chip-32-core-arm-cortex-a57#disqus thread

Nvidia/TSMC/Hynix: http://www.digitaltrends.com/computing/what-is-nvidias-volta-gpu-what-will-it-do-for-pcs/#!WIqZO

3. Die – Package CO-Design Flow incl. Assembly Design Kit (ADK)

Die-Package CO-Design Flow

Data-flow, formats and responsibilities highly structured,
True "Sign-off" technically feasible

Pathfinding, Design & Verify ICs Si2: TOOLS INTEROPERABILITY

Captive Packaging Expert(s) and OSAT Engineering Team cooperate to make die-pkg combo cost-effective

FRONT-END (Wafer-fab)
Capabilities & Constraints

Proven PDK

Process Design Kit

- Libraries
- Design Rules
- Spice Models
- Reference Flows
- Utilities

9-Apr-15

Die-Package CO-Design Flow

Data-flow, formats and responsibilities highly structured,
True "Sign-off" technically feasible

Data-flow, formats and responsibilities not clearly structured, "Sign-off" NOT feasible today

Pathfinding, Design & Verify ICs Si2: TOOLS INTEROPERABILITY

Plan, Design & Verify Pkg

FRONT-END (Wafer-fab)
Capabilities & Constraints

BACK-END (Assembly)
Capabilities & Constraints

Proven PDK

Process Design Kit

- Libraries
- Design Rules
- Spice Models
- Reference Flows
- Utilities

••••

Heatsink Data

Ball/Pin Data

Underfill Data

Package [Substrate Stack-up

Die-Package CO-Design Flow

Data-flow, formats and responsibilities highly structured,
True "Sign-off" technically feasible

Data-flow, formats and responsibilities not clearly structured, "Sign-off" NOT feasible today

Pathfinding, Design & Verify ICs Si2: TOOLS INTEROPERABILITY

Plan, Design & Verify Pkg
Si2: MODELING & DATA FORMATS

FRONT-END (Wafer-fab)
Capabilities & Constraints

Proven PDK

Process Design Kit

- Libraries
- Design Rules
- Spice Models
- Reference Flows
- Utilities

BACK-END (Assembly)
Capabilities & Constraints

New ADK

Assembly Design Kit

Heatsink Data

Ball/Pin Data PCB Stack-up

Underfill Data

Package [Substrate Stack-up

9-Apr-15

Die-Package CO-Design Flow

Data-flow, formats and responsibilities highly structured,

True "Sign-off" technically feasible

Data-flow, formats and responsibilities not clearly structured, "Sign-off" NOT feasible today

Pathfinding, Design & Verify ICs Si2: TOOLS INTEROPERABILITY

Plan, Design & Verify Pkg
Si2: MODELING & DATA FORMATs

FRONT-END (Wafer-fab)
Capabilities & Constraints

BACK-END (Assembly)
Capabilities & Constraints

Proven PDK

Process Design Kit

- Libraries
- Design Rules
- Spice Models
- Reference Flows
- Utilities

Universal Design Kit

K

U

New ADK

Assembly Design Kit

New Working Group in Si2

Heatsink Data

Ball/Pin Data PCB Stack-up

Underfill Data

Package [Substrate Stack-up

5003

4. Other Multi-Die EDA Challenges

18

EDA Challenges to Address

- Modeling and Data Formats as EDA tools' inputs
 Capabilities, material characteristics, fab flows,...
- Tools interoperability; user-friendly design flows
- PathFinding/partitioning IC- and system designs
- Much higher complexity (sub-) system designs
- Higher abstraction levels → die-level IP models
- Integrating multiple heterogeneous dice
- Electrical Thermal Mechanical interactions
- Closer developer ←→ user cooperation

5. What's Next?

2020s

A Peek into the Near / Far Future

- Production volumes will drive 2.5/3D cost reductions
 - Cost reductions will further increase market demand
 - Unit volume determines choice of technology, e.g.:

```
1000 10,000 100,000 1 Mill 10 Mill 100 Mill 1000 Mill Units

Per Year

OR: ----- Interposer (2.5D) ----- 3D TSV -----

OR: ----- 3 D Monolithic -----
```

- **2** Bigger library of <u>die-level</u> mega-functions for 2.5/3D-ICs
- IC designers develop these <u>die-level IP</u> building blocks
- System designers create systems with these blocks
- Rules & Standards as backbone for WW cooperation

4/10/2015

0

6. SUMMARY

- # 1: EDA and Manufacturing to reduce unit cost
- # 2: Business models to enable closer cooperation
- # 3: Interposer- & 3D-ICs aren't simple components, they are system building blocks

Semiconductors may follow the Automotive Industry

- → Use Modularity: <u>Die-level IP blocks</u> from subcontractors
- → Build a strong EcoSystem with clear responsibilities

THANK YOU! Q&A

herb@eda2asic.com