The Big Squeeze

Walden C. Rhines Chairman and CEO

April 2014

Moore's Law Coming to an End?

"No exponential is forever." Gordon Moore

Source: ISSCC Keynote, 2003

Moore's Law – The Number of Transistors

What would you like your legacy to be?

"...Anything but Moore's Law." Gordon Moore, May 2008

Moore's "Law" = 4 Data Points from 1962 to 1965

Why Has Moore's Law Been a Useful Approximation for Almost 50 Years?

Based on a real "law" of nature, the "Learning Curve", when two things are true:

2

Cumulative transistors produced increase exponentially with time (e.g. 2x cum volume → fixed % cost decrease)

Almost all cost reduction comes from shrinking feature sizes (and growing wafer diameter)

Learning Curve

Growth of Transistor Unit Volume Leads to Sustained ~30% per Year Cost Reduction

Source: VLSI Research, SIA, Federal Reserve Note: Revenue adjusted for Inflation... 1954-2012

Personal Computer Learning Curve: 1984-2012

Cost per Function Will Continue to Decline Long after Moore's Law Is Obsolete

Unit Volume Scale (log) Same as Time (years) Due to Exponential Growth in Transistors/Year since 1970

Transistors Shipped/Year vs. Semiconductor Revenue

With Focus on Moore's "Law", Feature Sizes Became the Metric of Success

"The advanced technology uses polysilicon gate lengths under 4um..."

© 2014 Mentor Graphics Corp. Company Confidential **www.mentor.com**

16, 1977/GRAND BALLEDON/9:00-11:45 A.M

Marketing Takes Over Engineering Definitions

Drawn gate length L_{drawn} Actual gate length L_{actual} Effective gate length L_{effective} Effective gate length L_{effective}

- \sim Width specified by layout engineer
- \sim Actual physical width of gate material
- ~ Over etch shortens physical width of gate

~ Dopant migration shortens effective gate length

NTRS Roadmap <mark>(1994)</mark> Attacks the Need to Define Technology Generations

TECHNOLOGY GENERATIONS DEFINED BY:

- Year of first **DRAM** shipment (10k+)
- Minimum feature size (nm)
 - "Smallest feature printed, usually poly gate"

1994 DRAM Projections						
First DRAM Shipment	1995	1998	2001	2004	2007	2010
Minimum Feature Size (μm)	0.35	0.25	0.18	0.13	0.10	0.07

Refined Again in the 1997 NTRS Roadmap

TECHNOLOGY GENERATIONS DEFINED BY:

- Year of first **product** shipment
- Minimum feature size (nm)
 - DRAM: "...The half-pitch of first-level interconnect dense lines"
 - LOGIC: "....gate length..."

Technology Generation 1997 Predictions							
First Product Shipment	1997	1999	2001	2003	2006	2009	2012
DRAM Half-Pitch (nm)	250	180	150	130	100	70	50
MPU Gates (nm)	200	140	120	100	70	50	35

Source: NTRS Roadmap, 1997

ITRS Gives Up...

"Significant confusion relative to the historical ITRS node definition continues to be an issue in many press releases and other documents that have referred to "node acceleration" based on other, frequently undefined, criteria...

In the 2009 ITRS, we will discontinue the practice, thus eliminating references to the term 'technology node.'

ITRS Roadmap, 2009

Source: http://scsong.wordpress.com/2009/10/13/looking-forward-to-22-nm/

TSMC Technology Roadmap – 20nm with FinFET

GlobalFoundries Technology Roadmap – 20nm with FinFET

Stable Ecosystem Keeps Supplier Margins Healthy while Growing Functionality 1.7X...

Technology Node (μm)	Linear Shrink Scale Factor (k)	Area Shrink (%)	Transistor Multiple
1.5			
1	0.67	44%	2.3 X
0.8	0.80	64%	1.6 X
0.6	0.75	56%	1.8 X
0.5	0.83	69%	1.4 X
0.35	0.70	49%	2.0 X
0.25	0.71	51%	2.0 X
0.18	0.72	52%	1.9 X
0.13	0.72	52%	1.9 X
0.09	0.69	48%	2.1 X
0.065	0.72	52%	1.9 X
0.045	0.69	48%	2.1 X
0.032	0.71	51%	2.0 X

Cost Reduction Keeps Ecosystem Healthy

Foundry

 Potential ~2X transistors per wafer

Capital Equipment

 35%/yr decrease in depreciation per transistor Stable Semiconductor Ecosystem

Fabless Companies • Achieves ~1.7X

transistors in design

End User
~1.7X functionality
Same price as previous generation

...Until the 20nm Node?

CHALLENGES TO MOORE'S LAW SCALING

- Lithearaphy shallonges begin soverally limiting eres espling at 20pm pade

"No cost/transistor crossover for first time at $28 \rightarrow 20$ nm transition"

2 | ISSCC Keynote | February 18th, 2013

more brillen

Traditionally, Cost-per-Wafer Increases 15-20% at Each New Technology Node

Foundry Wafer Cost (\$)

(300mm – 2 Years High-volume Production)

Source: IBS, IC Insights, Mentor Graphics Analysis

What's Happening at 20nm and Beyond?

20nm Additional cost of double pattern/etch

FinFET More double pattern/etch EUV delay

14/16nm

FinFET More double pattern/etch Triple pattern/etch SADP layers More EUV delay

Move to 157nm in 2007 and EUV in 2009

2003 PREDICTION:

2-Year Slip in 2 Years — Analysts' Prediction: 157nm in 2009 & EUV in 2011

2005 PREDICTION:

Another 2-Year Slip in Only 1 Year Analysts' Prediction: EUV in <mark>2013</mark>

2006 PREDICTION:

157nm Misses the Adoption Window...* EUV Volume Production **2015**

Some Progress, But a Long Way to Go

ASML customers 'intensify' EUV development

Extreme ultraviolet sources now routinely supporting 40 wafers per hour throughput, says the lithography company.

ASML has reiterated its confidence in the successful deployment of extreme ultraviolet (EUV) lithography by chip manufacturers over the next few years, with **outgoing CEO Eric Meurice** saying that the technology had "confirmed" its capability for the forthcoming 10 nm node in logic applications.

Key light source developer Cymer is now a division of ASML after the Netherlands-based company decided to in-source that capability following a period of under-investment in EUV. Cymer reported earlier this year that it had reached an EUV output of 55W – enough to support the production of 40 wafers per hour.

During a conference call to discuss ASML's latest financial results, Meuri

What about 450mm Cost Savings?

450mm Transition

Wafer Transition	Area Increase
100mm → 125mm	56%
100mm → 150mm	125%
25mm → 150mm	44%
150mm → 200mm	78%
00mm -> 300mm	125%
00mm → 450mm	125%

3

SEMI Industry Strategy Symposium (ISS) - January 15, 2013: Intel Corporation executives make first public presentation of 450mm silicon wafer patterned with 28nm features using nano imprint lithography.

Wafer Diameter Helps Cost

2.0 – 2.3 X number of devices (2.25x wafer area)
Economies of scale with fewer factories
Lower device costs

Die Size (mm)	450mm	Delta vs 300mm
1.0 x 1.0	134,357	1.97 X
2.0 x 2.0	35,857	2.12 X
3.0 x 3.0	16,241	2.18 X
5.0 x 5.0	5,889	2.23 X
7.0 x 7.0	2,997	2.27 X
10 x 10	1,449	2.32 X
20 x 20	337	2.27 X

Gross Dice per Wafer

Source: Intel, Applied Materials, IC Knowledge

450mm Wafer Impact — Significant but Too Little, Too Late

Source: IBS

WHOSE MARGIN GETS THE BIG SQUEEZE P

WHO'S GONNA GET SQUEEZED?

The Candidates Sincon roundries:

- Semiconductor companies?
- End users and system companies?

Food Chain Suppliers (other than Foundries)? Silicon foundries? Set on ductor companies? End users and system companies?

IC Fabrication Equipment (Front End)

Note (Gross Profit Margin): Includes Applied Materials, ASML, Tokyo Electron, Lam, KLA-Tencor, Dainippon Screen, Hitachi Kokusai, Daifuku

Lithography & Mask Making Equipment

Assembly Equipment

Note (Gross Profit Margin): Includes Kulicke & Soffa, ASM Int., DISCO Corp., BE Semiconductor, TOWA Corp., Shinkawa Ltd., Samsung Techwin, HANMI Semiconductor, KLA-Tencor, Rudolph Technologies

ATE Equipment

Note (Learning Curve): Revenue adjusted for Inflation... IC Revenue:1985-2012, Equipment Revenue: 1985-2012 Note (Gross Profit Margin): Includes Advantest, Teradyne, Tokyo Seimitsu, Tokyo Electron, LTX – Credence, FEI Company

WHO'S GONNA GET SQUEEZED: "FOOD CHAIN" SUPPLIERS? Ten Years Ago, ATE Cost per Transistor Was Not Keeping Up with the IC Learning Curve

"It may cost more to test a transistor than it costs to manufacture the transistor."

1.00E-09

1999 ITC Keynote: Pat Gelsinger, Intel CTO

Chapter 9 page 97 ICKnowledge.com

WHO'S GONNA GET SQUEEZED: "FOOD CHAIN" SUPPLIERS? ...Providing a Warning of a Need for Major Innovation

Source: VLSI Research, EDAC Market Statistics Service, Federal Reserve Note: Revenue adjusted for Inflation... 1985-2012

1E+17 1E+19 Cumulative IC Transistors 1E+21

Compression Realigns ATE Costs

What about the EDA Tools Cost?

Note (Learning Curve): Revenue adjusted for Inflation... 1985-2012

What about the EDA Tools Cost?

What about the EDA Tools Cost?

"Food chain" suppliers (other than foundries)? Silicon Foundries? Semiconductor companies?

End users and system companies?

WHO'S GONNA GET SQUEEZED: SILICON FOUNDRIES?

WHO'S GONNA GET SQUEEZED: SILICON FOUNDRIES?

WHO'S GONNA GET SQUEEZED: SILICON FOUNDRIES?

Foundry

Note (Gross Profit Margin): Includes TSMC, SMIC, Chartered, UMC

"Food chain" suppliers (other than foundries)? Silicon foundries? Semiconductor Companies?

End users and system companies?

Fabless and IDM

Note (Fabless Gross Profit Margin): Includes 31 fabless semiconductor companies Note (IDM Gross Profit Margin): Includes 16 IDM semiconductor companies

WHO'S GONNA GET SQUEEZED: SEMICONDUCTOR COMPANIES?

Fabless and IDM

Note (Fabless Gross Profit Margin): Includes 31 fabless semiconductor companies Note (IDM Gross Profit Margin): Includes 16 IDM semiconductor companies

WHO'S GONNA GET SQUEEZED: SEMICONDUCTOR COMPANIES?

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.com

Fabless and IDM

"Food chain" suppliers (other than foundries)?Silicon foundries?

- Semiconductor companies?
 - **End Users and System Companies?**
 - Mobile Phones
 - Computers
 - Electronics Manufacturing Suppliers (EMS)

End User

CAN WE GET THERE WITHOUT SQUEEZING MARGINSP

Other Possibilities

Silicon Foundry Innovations?

- Slow down the learning curve?
- New innovations

DO WE HAVE TO SQUEEZE MARGINS? OTHER POSSIBILITIES Intel Predicts Wafer Fabrication Cost Solution

Source: William Holt, Intel Inc. May 7, 2013

Other Possibilities

Silicon foundry innovations?
 Slow Down the Learning Curve?
 New innovations

DO WE HAVE TO SQUEEZE MARGINS? OTHER POSSIBILITIES Unit Cost Is a Function of Cumulative Unit Volume

Cumulative Units Produced (log scale)

Semiconductors

Growth in Unit Volume Distinguishes Semiconductors from Other Industries Because of Insatiable Appetite for Information

	Industry	10-Year CAGR
1	Crude Oil	1.1%
2	Aluminum	2.2%
3	Cotton	2.4%
4	Automotive	3.6%
5	Steel	5.8%
6	Computer	11.5%
7	Semiconductors	72% (Transistors)

DO WE HAVE TO SQUEEZE MARGINS? OTHER POSSIBILITIES

Explosive Growth of Information

Tech. Capacity to Store Digital Data

Optimally Compressed Data (exabytes)

Source: Martin Hilbert and Priscila López, "The World's Technological Capacity to Store, Communicate, and Compute Information", Science,

Other Possibilities

Silicon foundry innovations?
Slow down the learning curve?
New Innovations

STAYING ON THE LEARNING CURVE DOESN'T REQUIRE MOORE'S "LAW" SCALING

Growing Integrated Circuits Vertically

Increasing chip density & functionality without scaling

Source: Samsung 3D vertical NAND flash memory

DO WE HAVE TO SQUEEZE MARGINS? OTHER POSSIBILITIES

Or Stack Die in 2.5D or 3D

Source: IBM, Samsung, Sharp, Fujitsu, Intel, Renesas

DO WE HAVE TO SQUEEZE MARGINS? OTHER POSSIBILITIES New Technologies Drive Greater Functionality at Reduced Cost

Silicon Photonics

Spintronics

SemiSynBio

Programmable self assembly for sub 10 nm semiconductor On-chip microbial energy generation

Chip-based DNA synthesis

New Materials

Source: "Beyond Silicon: Transistors without Semiconductors", Michigan Tech News 6/2013

DO WE HAVE TO SQUEEZE MARGINS? OTHER POSSIBILITIES

Beyond Silicon

	NAND Flash	DNA in Cell
ON Power (W/GB)	10-2	<10 ⁻¹¹ (9 orders of magnitude)
Density	10 ¹⁶ bit/cm ³	10 ¹⁹ bit/cm ³ (3 orders of magnitude)

Source: SRC 11/12/2012

Summary: The Choices

Need to offset cost of double/triple patterning plus FinFET to continue 70% CAGR unit growth and learning curve cost

- Price pressure on the foundries?
- Margin pressure on the semiconductor companies?
- Force the supply chain to reduce cost faster than the long term learning curve?
- Slow down the rate of unit growth, and consequently innovation and new applications, of semiconductor electronics?

Innovate to Maintain Unit Volume Growth and Cost Reduction

icro-bump

Substrate

Carbon Nanotubes

© 2014 Mentor Graphics Corp. Company Confidential **www.mentor.com**

3D

Stacking

www.mentor.com