
FinFETs State of The Device

Jamil Kawa Synopsys Scientist April 17, 2014

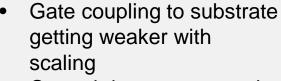
AGENDA

- From Planar to Multi-Gates (FinFET)
- FinFETs Today
- Device Technology 10nm and Beyond
- Summary and Conclusions

Progression from Planar to Multi-Gates

3

 $T_{si} = 10 \text{ nm}$ T_{si} = 20 nm G G Si Thickness [nm] 0.0 4.0 S D


8.0

12.0

16.0

20.0

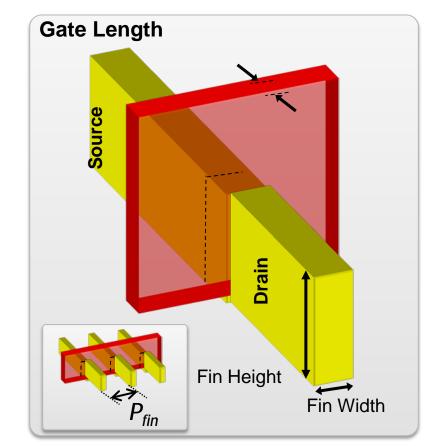
S

Control does not exceed 5nm from surface

Leakage Current Density [A/cm²] $@V_{DS} = 0.7 V$

 $I_{off} = 2.1 \text{ nA}/\mu \text{m}$ $I_{off} = 19 \,\mu\text{A}/\mu\text{m}$

G


G

Tsi < ¹/₂ * L fog good channel control

D

FinFET Design Considerations

- Fin Width
 - Determines short channel effects
- Fin Height
 - Determines Current
 - Limited by etch technology
 - Also limited by mechanical stability
- Fin Pitch
 - Determines layout area
 - Limits S/D implant tilt angle
 - Tradeoff: performance vs. layout efficiency

S Accelerating Innovation

SAIION2

AGENDA

- From Planar to Multi-Gates (FinFET)
- FinFETs Today
- Device Technology 10nm and Beyond
- Summary and Conclusions

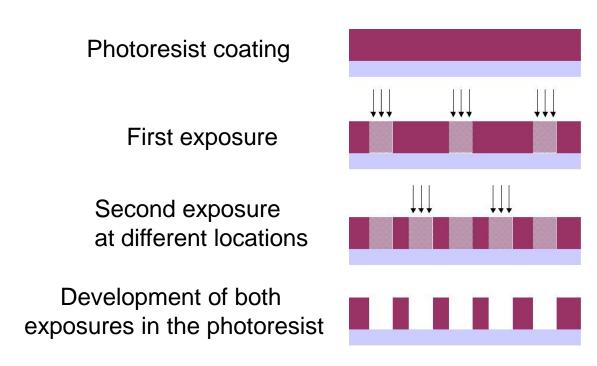
Status of FinFET technology today

- 22nm Trigate is in full production
- 16nm / 14 nm proven is silicon (testchips)
 - Production (yield) 1 to 2 years away
- 10nm: No major show-stoppers
 - Major Foundries working on it for over a year
 - Tools are in intermediate stages of development / partner interaction
 - The metrics of **accuracy**, **performance** and **run time** dominates
- The10 nm device is FinFET
 - Channel and Source/drain engineering is focus
 - Interconnect reaching the limits $\tau = 80$ ns significant bottleneck!!
 - Layout and design experience make a HUGE impact
 - IP architecture is critical

Status of FinFET technology today

- Feasibility & Cost are two major factors in determining among Litho alternatives (LELE vs. SADP, etc..)
 - Has Layout Rules, Tools and IP implications)
- On the surface Tools for 10nm are no different than for 14 nm /16nm given the device is more or less the same... but to maintain the triad of Accuracy, Performance, and Runtime,... tools are significantly impacted
- Largest impact on tools will be in

7

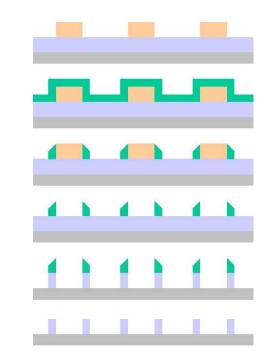

- Simulation
- Lithography
- IP / Routing
- Extraction
- Verification (special constructs, fuzzy pattern matching), etc.

Some challenges for 10nm technology

- Simulation:
 - Netlist elements growing 3X-5X compared to 28nm
 - More complex BSIM-CMG model
 - Higher switching speeds -> smaller time-step -> simulation time without tools enhancements is 12X slower than planar.
 - Multi threading + other simulation enhancements brings it back to 2X-3X range
- Lithography: converging on solutions for 10nm
 - Spacer is Poly (SIP) for gate , LELELE (TPT) for M1 and contact, Spacer is Dielectric (SID) for Mx layers. QUAD patterning for 10nm lower interconnect?
 - TPT decomposition likely to be done by designers.
 - Subject of debate

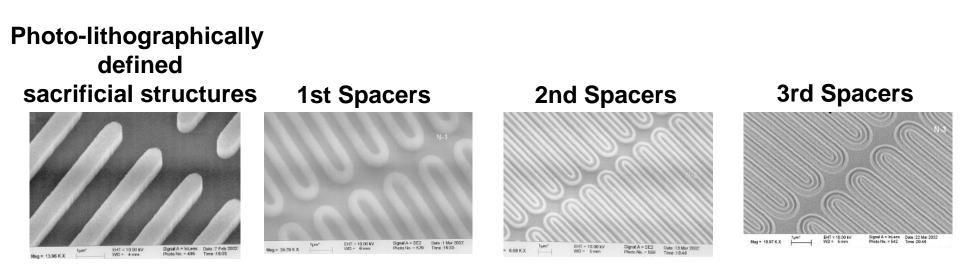
Double Patterning Technology

 Double exposure: a sequence of two separate exposures of the same photo-resist layer using two different photomasks



SYNOPSYS[®] Accelerating Innovation

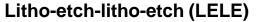
9


Self-aligned Spacer: Basic Review

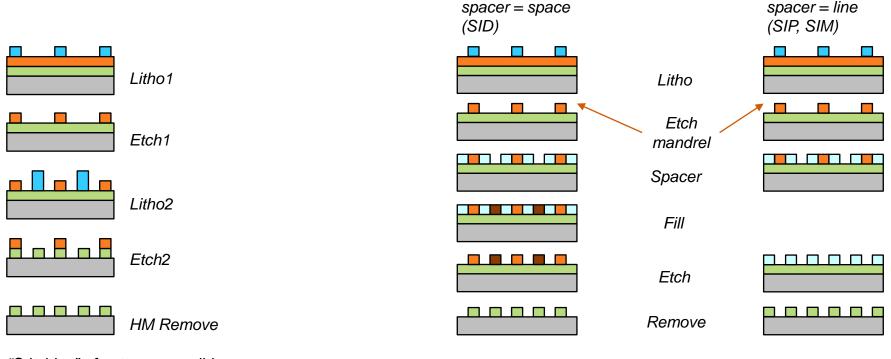
- A spacer is a film layer formed on the sidewall of a pre-patterned feature
- There are two spacers for every line, the line density has now double
 - 1. First pattern
 - 2. Deposition of mask material
 - 3. Etching to from sidewall spacers
 - 4. Removal of first pattern
 - 5. Etching using remaining spacers as mask
 - 6. Removal of spacer, leaving final pattern

SYNOPSYS[®] Accelerating Innovation

Spacer Lithography – Rinse and Repeat


2ⁿ lines after n iterations of spacer lithography!

- Many flavors of Spacer Lithography
 - ➢ SIP, SADP, SID, etc....
 - Flavor of Spacer has cost, tolerances, design rules, and verification implications

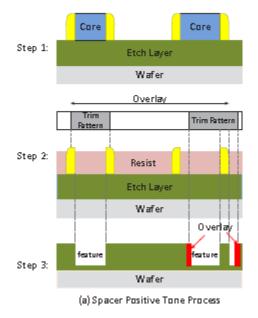

S[®] Accelerating Innovation

SAII0h2

Double Patterning (DPT) Options

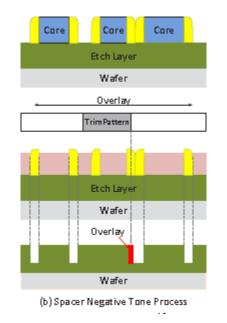
Self-aligned double patterning (SADP)

"Stitching" of patterns possible


SADP requires additional trim masks

S Accelerating

SVIIUPS


- Double patterning introduces significant variability in device and interconnect performance:
 - LELE: impacted by CD and overlay of each patterning step
 - Spacer: impacted by CD variation of mandrel, overlay only for trim masks (usually uncritical)
- Choice per layer depending on cost, variability needs

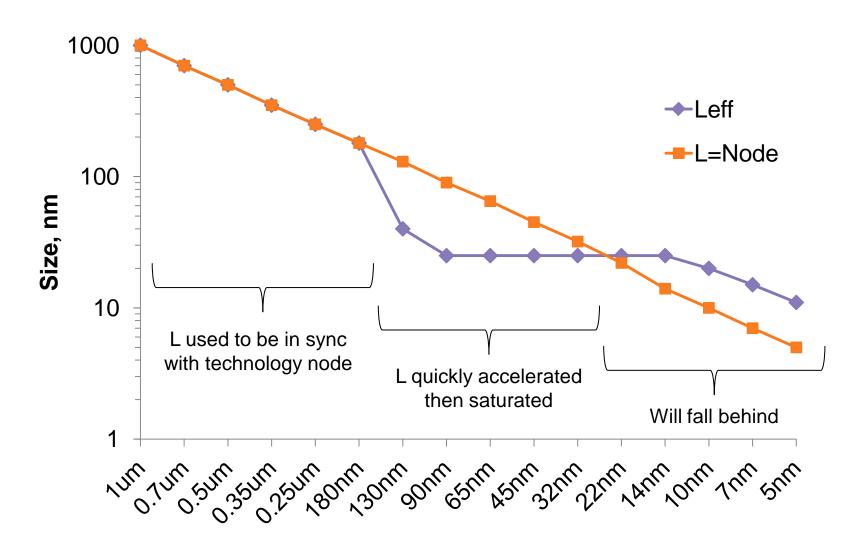
More on SADP – Positive / Negaive Tone

Positive Tone:

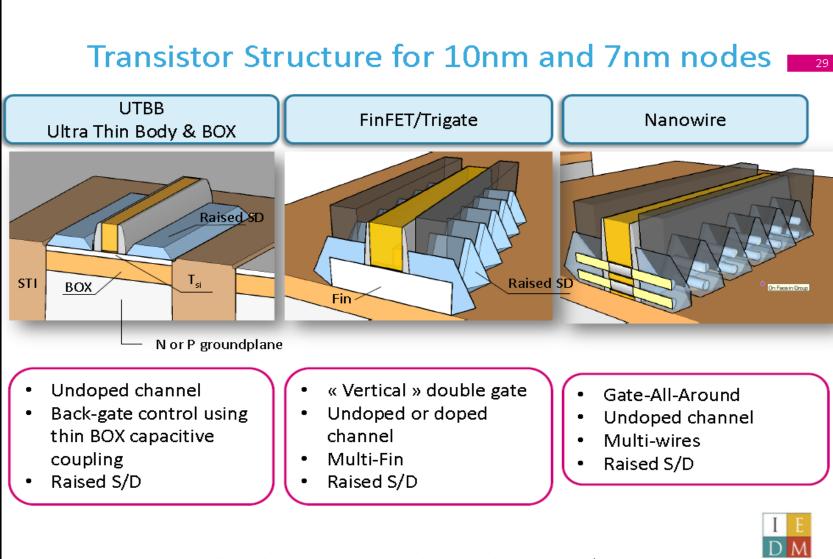

- Large flexibility on feature width and space
- Non-sidewall regions covered by trim mask are exposed
- Exposed material will be etched out to be the feature

Negative Tone:

- Sidewall regions define the trench
 - Design infelxibility
- Sidewall + NOT covered by trim is the trench / feature


Notice impact of sidewall / Trim on overlay

AGENDA


- From Planar to Multi-Gates (FinFET)
- FinFETs Today
- Device Technology 10nm and Beyond
- Summary and Conclusions

Evolution of Transistor Scaling

SYNOPSYS[®] Accelerating Innovation

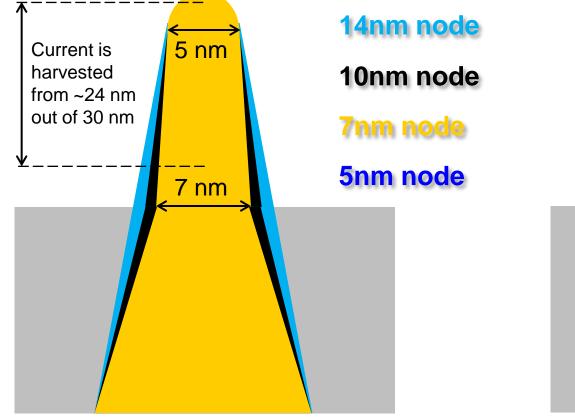
Device beyond 14nm: scaling to 3.5nm

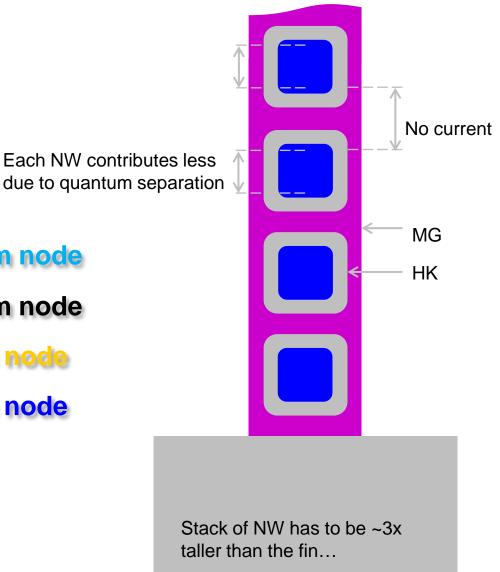
Challenges of 10nm and 7nm CMOS Technologies, IEDM Short Course, Dec. 8th 2013

From Frederic Boeuf, IEDM SYNOPSYS Acceleration

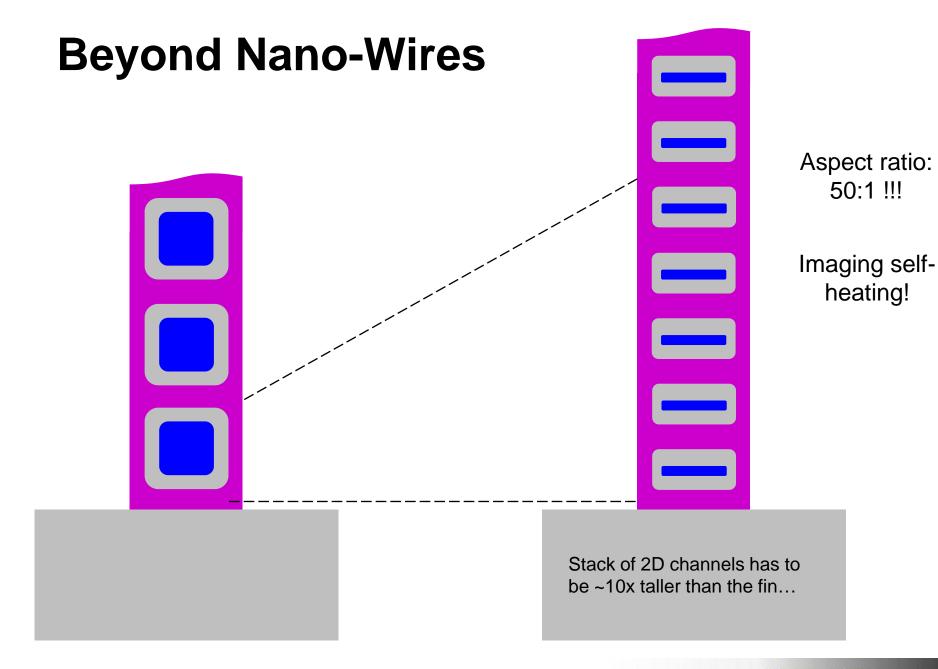
Expected Design Rules

Foundry node	Gate pitch	L	Spa- cer	Fin top	Fin bottom	Fin height	Fin pitch	Contact size	EOT
16 / 14	90	25	18	5	15	35	48	29	0.9
10	63	20	11	5	11	32	34	21	0.85
7	44	15	7	5	7	30	24	15	0.8
5	32	11	5	5	Nano- wire	Stacked	20	11	0.8
3.5	22	7.5	3.5	4			13	7.5	
2.5	16	5	3		2D ma- terial		10	5	

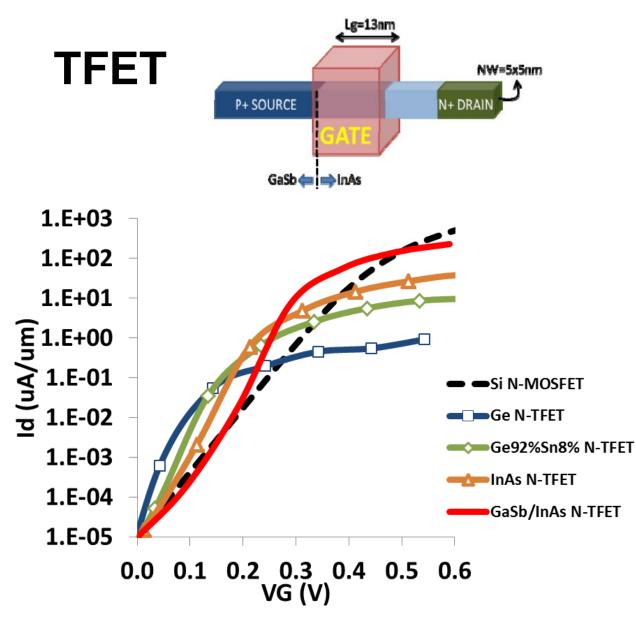

SYNOPSYS[®] Accelerating Innovation

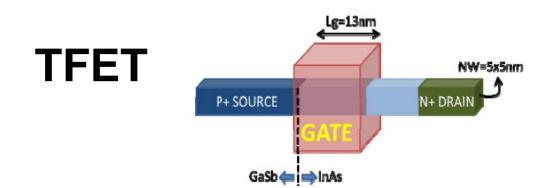

Technology

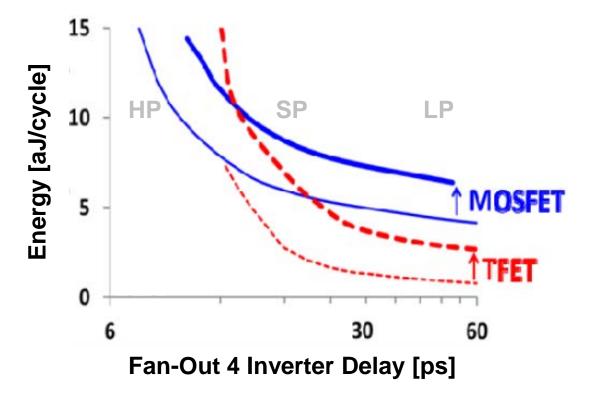
Technology (foundries)	10nm	7nm	5nm	3.5nm	2.5nm
L, nm	20	15	11	7.5	5
Transistor architecture	FinFET	FinFET	Nano-wire	Nano-wire	2D material
Materials	Si	Si, SiGe, InGaAs	Si	Si	MoS ₂
# of atoms in the channel	300 k	100 k	10 k	3 k	300



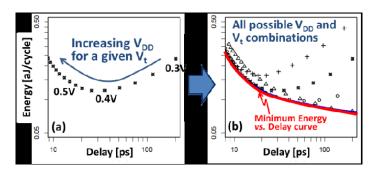
Beyond FinFETs







- "Si MOSFET" NW has similar structure to the TFET shown, with n+ source and n+ drain
- Only one TFET material combination with broken gap heterojunction gets close to the Si nano-wire
- And only for the n-type
- Nothing comparable has been found for the p-type so far


Comparison of drain current for different N-TFET materials and Si MOSFET using atomistic simulations. (Vds=0.3V, Lg=13nm and loff=10pA/um target)

Power-performance without (thin lines) and with (thick lines) device variations is shown for 10% logic activity

- Surprisingly, TFET variability is comparable to the MOSFET's
- For both, variabilities are dominated by the WF due to the bad assumption of metal grains not shrinking between now and 2018
- The MOSFET beats TFET at HP
- They are comparable @SP
- The TFET is better @LP

AGENDA

- From Planar to Multi-Gates (FinFET)
- FinFETs Today
- Device Technology 10nm and Beyond
- Summary and Conclusions

Summary

- 14/16nm on track, and 10nm is under development
- FinFETs are scalable to 7nm node, maybe beyond
- Interconnect challenges tremendous @ 10nm / beyond
- Manufacturability issues abound
- Variability trend is encouraging
- Non-Si channels boost Ion, but suffer BTBT leakage
- Self-heating will get worse over time
- Nano-wires and TFET devices promise scaling to 2.5nm
- TFETs have a promise of sub- 0.4V VDD scaling
- EDA tooling / IP techniques challenges NOT trivial

