
An Approach to Verification of
Many-Core Systems Using the
Virtual Platform
Victoria Mitchell
Altera Corporation

Topics

 Introduction
 Tools
 Setup
 Findings

Introduction

Previously, on this program…

Extending the life of the Virtual Platform:
 Earlier Verification
 Architectural Decisions
 Design Verification (visibility)
 DFX Methodology

… not just early enablement of software,
but true simultaneous engineering

Why Many-Core?

1. Parallelization of tasks
2. Using cores as repeatable templates of custom logic

− Modify functionality over time
− Faster to design
− More automatic and reproducible
− Ultimately more configurable

Why Extend The Virtual Platform?

1. Cost effective to leverage investment
2. Develop once, use in many applications
3. Improves overall quality of HW
4. Improves overall quality of system

Enabled by unique capability of the VP
 Instrumentation of platform: models, peripherals
 Intercepting simulation with hosted functions
 Non-intrusive
 Verify the full system

Tools Used: Processor Simulation and Interception

 Translates instructions to host native

 Dynamically builds translation lookup
 Peripheral models execute in quantum measure of time

How Binary Intercepts Work

 Dynamic loadable
modules

 APIs are registered to
events

 Examples of events:
− simulation construction
− model enumeration
− before or after an instruction

morph
− after 1-N instructions
− when address is executed
− when data address range is

accessed
− programmers view events

 May be opaque or
transparent

 What you can do with
intercept APIs
− inspect memory
− drop into debugger of

simulation, or code
− alter translation
− change processor state
− evoke other APIs
− add/remove other API

callbacks

Imperas M*SDK and VPA API

 Use cases include
− Drivers
− Firmware
− Assembly libraries
− OS porting and bring up
− Hypervisors

 Tool features
− Multiprocessor, multicore, multithread,

multi-everything
− Non-intrusive
− Low overhead (high performance sim)
− User extendable

Simulator Break on messages TCL callbacks Full GDB command set

Trace console
Trace execve
Trace scheduler
Trace tasks
Trace module loads
Trace printk

Operating System

Break on line
Break on function call
Elf introspection
Unlimited HW breakpoints
Memory region watchpoints
Trace source line
Trace context
Trace functions
Line Coverage
Function profiling
Heap checks
Stack checks
Malloc checks
Semaphore checks

Bare Metal Apps & Middleware

Bus connectivity view
Peripheral register view
Peripheral src debugger
Processor freeze control
Trace peripheral access
Memory coverage
Shared memory checks

Platform (e.g. Drivers)

Multi Processor Debug
Address space introspection
Virtual2physical mapping
Print CP registers
TLB dump
Break on exception
Break on mode
Break on register change
Break on instruction
Instruction coverage
Instruction profiling
Fault Injection
Cache analysis

Trace coprocessor registers
Trace TLB trace exceptions
Trace modes
Trace service calls
Trace hypervisor calls
Trace secure monitor calls
Trace MT/MP extensions
Trace system calls
Trace timer
Trace cache instructions
Trace SIMD extensions
Trace instruction
Trace register change

Processor
Break on line
Break on function call
Elf introspection
Unlimited HW breakpoints
Memory region watchpoints
Trace source line
Trace context
Trace functions
Line Coverage
Function profiling
Heap checks
Stack checks
Malloc checks
Semaphore checks

Our Platform Setup

 Matrix network of NIOS-II soft cores
− 1 "master”
− 2 - N cores
− many topologies

 NIOS-II OVP model for nodes
 Node functionality

− initialization
− address negotiation
− data packet handling

 Platform construction/
assembly
− specify # NIOS and topology

Platform With Direct Verification

 Platform runtime w/ code
embedded in NIOS-II SW
− Sendmsg() function
− Acknowledge() function

 Uses printf()
 Compile-time switches

to enable
 Changes execution path

and size of the code

Code Here

Platform With Intercept Library

 Same platform, but with
“production-ready” NIOS
firmware

 Intercept sendmsg() and
acknowledge()

 Registered callback at
memory access

Code Here

Positive Feedback

 Use of intercepts eliminate need to change NIOS-II
microcodes

 Validation engineers hook into intercept functions
where they would normally write code for a directed test

 Intercept functions have simple CLI that is scriptable
onto test bench

 AV is confirmed for
addressing, topology,
transactions

 DV validates on the system level
 eSW focuses on production code

Improvements Realized

• RTL and FW in sync
• 100% production

microcode coverage

Test Coverage

• FW starts with test-bench
setup

• Closed-loop architecture
verification

Speed of Design

Still Work to be Done

1. Separate instances of the intercept library per
processor
− Memory impact
− Duplication and sync

2. Execution speed

vs number of cores

3. Enhance
instrumentation
to include FW profiling and performance

0

1000

2000

3000

4000

5000

6000

#Procs

Run Time (secs)

Conclusions

Extending the Software Virtual Platform:
 Doesn't replace timing analysis or characterization of

the design, but …
− Improvements are well worth the negligible extra effort

 We plan to continue to use thru product development
lifecycle of complex, many-core systems

Thank You Thank You

	An Approach to Verification of Many-Core Systems Using the Virtual Platform
	Topics
	Introduction
	Why Many-Core?
	Why Extend The Virtual Platform?
	Tools Used: Processor Simulation and Interception
	How Binary Intercepts Work
	Imperas M*SDK and VPA API
	Our Platform Setup
	Platform With Direct Verification
	Platform With Intercept Library
	Positive Feedback
	Improvements Realized
	Still Work to be Done
	Conclusions
	Slide Number 16

