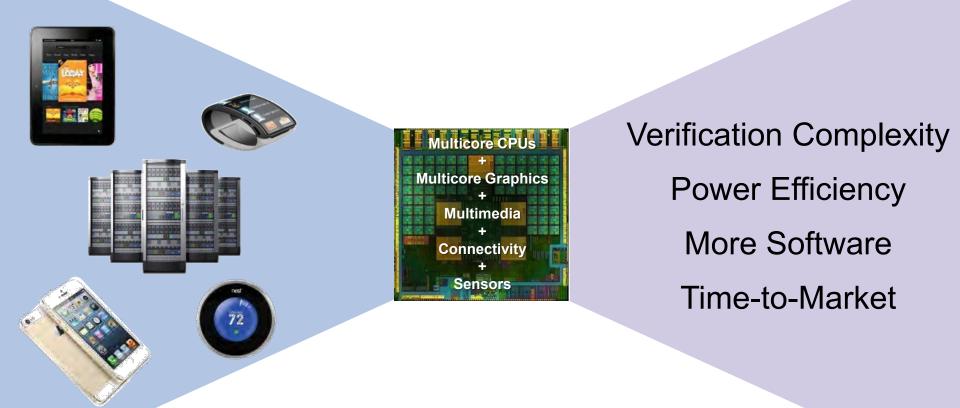

Validation Strategies with pre-silicon platforms

Shantanu Ganguly

Synopsys Inc April 10 2014


Agenda

- Market Trends
- Emulation HW Considerations
- Emulation Scenarios
- Debug

Mobile & Internet-of-Things Driving Growth

Convergence \rightarrow SoC complexity \rightarrow New verification challenges

3

Synopsys Confidential

SoC Multi Core Architecture Trends

Massive feature integration IP Cores Per SoC Average # Differing IP Cores Driven largely by Moore's Law (supply) 120 and convergence (demand) **Distributed architectures** 100 Higher scalability (and independence) Sharing memory 80 Multiple processors (Multicore) CPU 60 Special purpose (MPEG, GFX, ...) 40 Always on controller Distributed DMA 20 Removes centralized DMA bottleneck 0 Increasing software complexity 2008 2009 2010 2011 2012 Re-use with multiple platform SoCs Source: Semico Research, Aug 2010 Broader end use market coverage per Design Starts by Process Node SoC with software programmability 22nm 32nm 45nm 65nm 90nm 130nm 180nm

© 2014 SyrFrom NIT Alumni Meet Keynote Speech: Jim Hogan

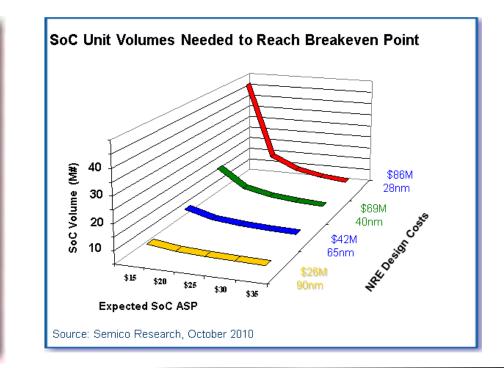
DSP

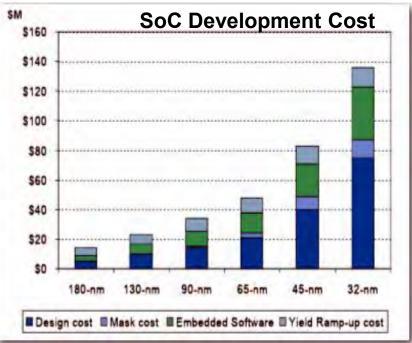
SYNUF

2014

2015

2013

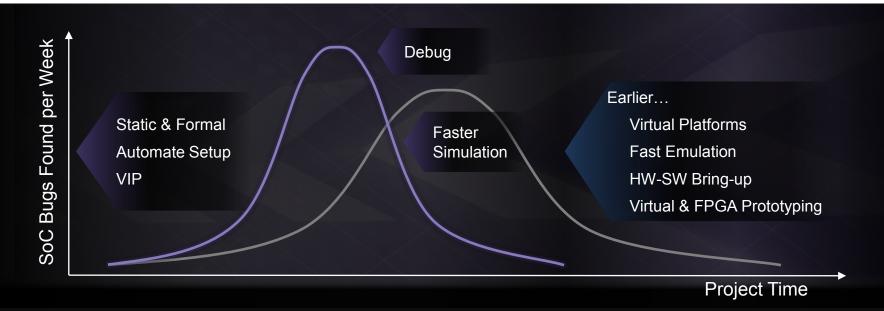

4


SoC Design Complexity & Cost – Out of Control

Source: I.B.S. Inc.

- Increasing complexity means increased risk
 - At 32nm, a typical design has ~50% chance to meet all objectives
 - At 22nm, that number drops to ~30%

- "Designer productivity must improve to match chip complexity"
 - The later a problem is detected, the more impact it will have on design schedules


5

Source: Gartner

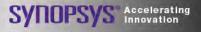
SYNOPSYS[®] Accelerating Innovation

Need 'Shift-Left' for Faster Time-to-Market

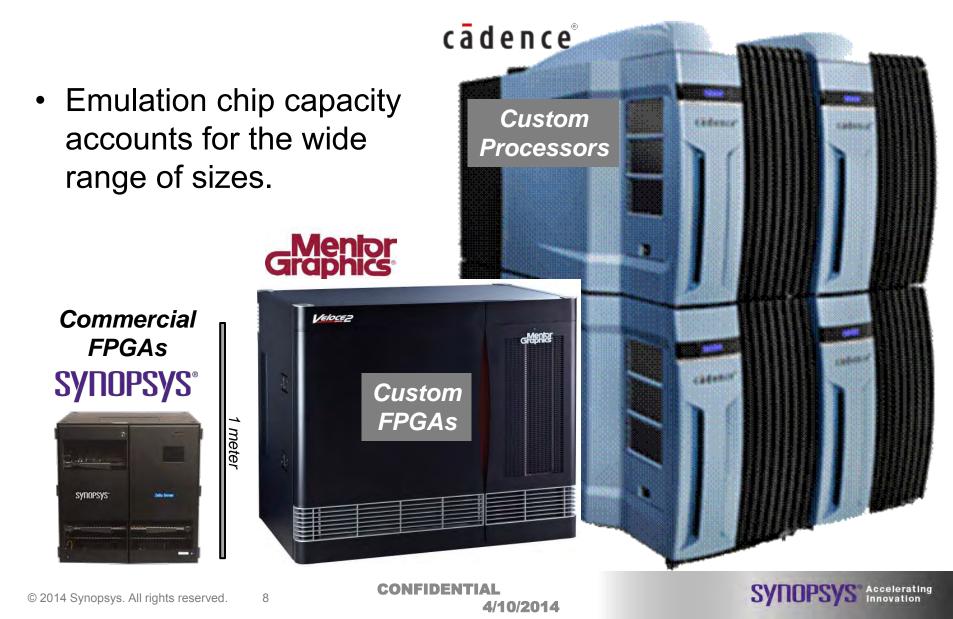
Earlier HW verification, earlier SW bring-up

Smart Verification Strategy - Static and Formal

Intelligent Verification Methodology - Integrated, automated flows


Earlier HW-SW Bring-up - Faster emulation

Verification Continuum - Seamless flow


> SYNOPSYS[®] Accelerating Innovation

Agenda

- Market Trends
- Emulation HW Considerations
- Emulation Scenarios
- Debug

Three Ways to Emulate 256 Million Gates

Custom Emulation Chip Advantages

	Custom FPGA	Custom Processor	Commercial FPGA
Compile Time	Faster due to emulation-specific interconnect architecture.	Faster due to processor-type architecture.	Slower due to chip place & route. Easily run on parallel on a small server farm.
Debug	Built-in: Change probes without recompile.	Built-in: Change probes without recompile.	Mix of built-in (readback) and FPGA resource. Some probe changes require recompile.
Emulation Compiler	Single-vendor: Fully integrated, all vendor-developed at vendor cost. Small user base.	Single-vendor: Fully integrated, all vendor-developed at vendor cost. Small user base.	Chip-level half by FPGA vendor's large team at no cost. Large user base good for quality.

Commercial FPGA based solution superior for Emulation

- Highest capacity per chip
 - ZeBu Server 3 module emulates 60M gates in 9 emulation chips.
 - Palladium XP needs 54 chips, Veloce 2 needs 75 chips.
 - Components fit better, fewer design nets get cut.
- Means less interconnect HW
 - Highest performance: 2 to 5 MHz
 - Low power, small size, reliable
- Latest process every two years
 - From Xilinx, no development cost

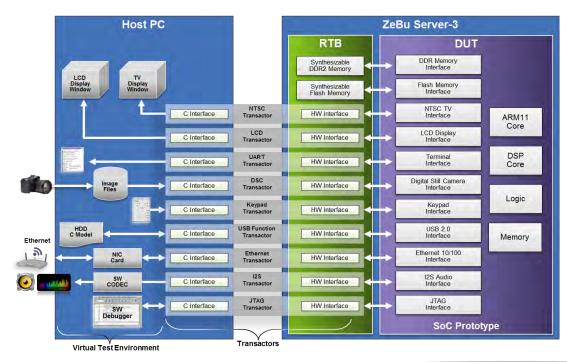
== Lowest TCO

Great things come in

small packages

- Fastest, coolest, smallest, cheapest, most reliable logic emulation.

ZeBu Server-3 Hardware Performance Advantage


- 6-8X larger capacity emulation chips
 - fewer nets must cross chip-to-chip,
 - more nets stay on-chip where they are fast
- High bandwidth communication between emulation chips, modules, units, host
 - Each chip has 600 Gbps bandwidth to other chips
 - 33 Gbps bandwidth between modules
 - 640 Gbps bandwidth between units
 - 4 Gbps host communication bandwidth
- FPGA architecture advantages
 - Specialized HW for arithmetic operations in FPGA.
 - Wire-to-wire and gate-to-gate mapping, no modeling abstraction

Application	Design Size	Performance
GPU Quad Cluster	60 MG	5.0 MHz
GPU Dual Cluster	40 MG	4.95 MHz
GPU Single Cluster	33 MG	4.75 MHz
Customized GPU	50 MG	3.75 MHz
Communication Processor	60 MG	2.9 MHz
Consumer SoC	100 MG	2.8 MHz
Broadband SOC	80 MG	2.5 MHz

SYNOPSYS[®] Accelerating Innovation

ZeBu Server-3 Throughput Advantage

- Highest raw performance hardware
- Multi-threaded runtime
- Truly concurrent communication message port
 - No blocking message transfer
- Dedicated high speed HW resources for implementation of transactors and communication ports.
- Each transactor can be modeled as separate process for maximum parallelism.

Agenda

- Market Trends
- Emulation HW Considerations
- Emulation Scenarios
- Debug

Verification: Architecture to Silicon

Accuracy

Architecture Exploration

Does the architecture meet performance and power requirements?

Processor & GPU selection Memory System Dimensioning Interconnect Configuration Cache Coherency Global Interrupts Power Management

Design Technology:

Traffic Models Transaction Level Models Performance Visualisation Hybrid-Simulation

HW / SW Integration

Prototype SW before first silicon

OS Integration Driver Development Virtualisation Performance Optimisation

Tools:

Debugger Transaction Level Models systemC Virtual Prototypes FPGA Prototypes Performance Visualisation

Functional Verification

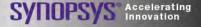
Does the design function correctly &meet performance and power requirements?

Protocol Compliance Interconnect BW & Latency Cache Coherency Data integrity Power & Clock Domains

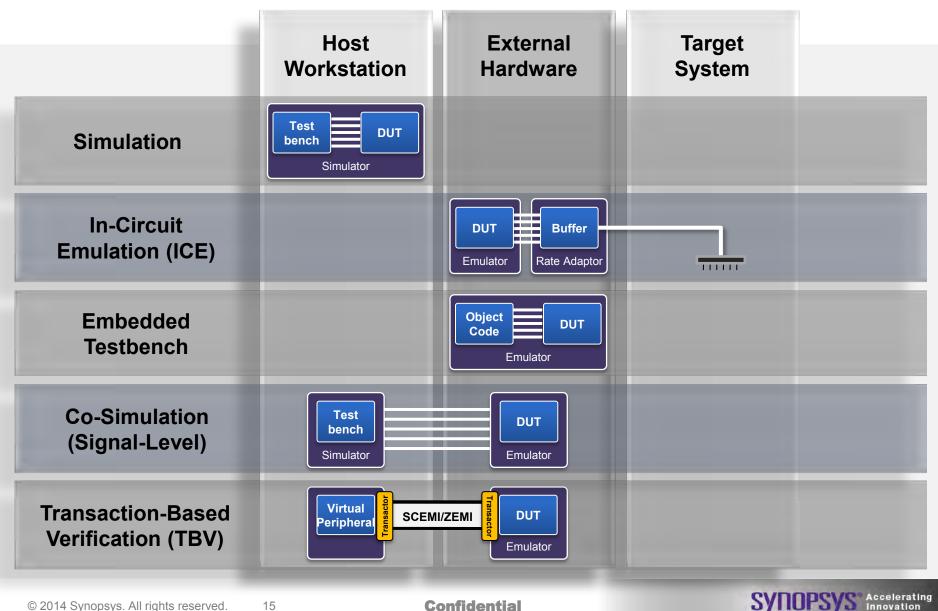
Design Technology:

Traffic Models Verification IP System Monitor Performance Visualisation

System Validation


Validate that the design functions as specified.

Graphics Video Audio Browser Application Gesture recognition Phone functions Camera functions


Design Technology:

FPGA Prototypes HW Accelerated Simulation Hybrid-Simulation Verification IP Transaction Level Models IO Traffic

Turn Around Time

Common HW-Assisted Verification Modes

Confidential

Summary of Verification Modes

	External Hardware	Challenges		
Simulation	Everyone has onePerfect for 90% of designs	Never fast enough		
In-Circuit Emulation (ICE)	Highest performancePhysical connections	Rate adapter availability		
Embedded Testbench	Very fastNo physical connections	Needs synthesizable TBLimited to Software only		
Co-Simulation (Signal-Level)	 Simple to use Leverages existing TB Good for DUT bring-up 	Little performance gain		
Transaction-Based Verification (TBV)	Highest performanceWorks with virtual devicesNo rate adapters needed	Availability of transactors		

Confidential

SYNOPSYS[®] Accelerating Innovation

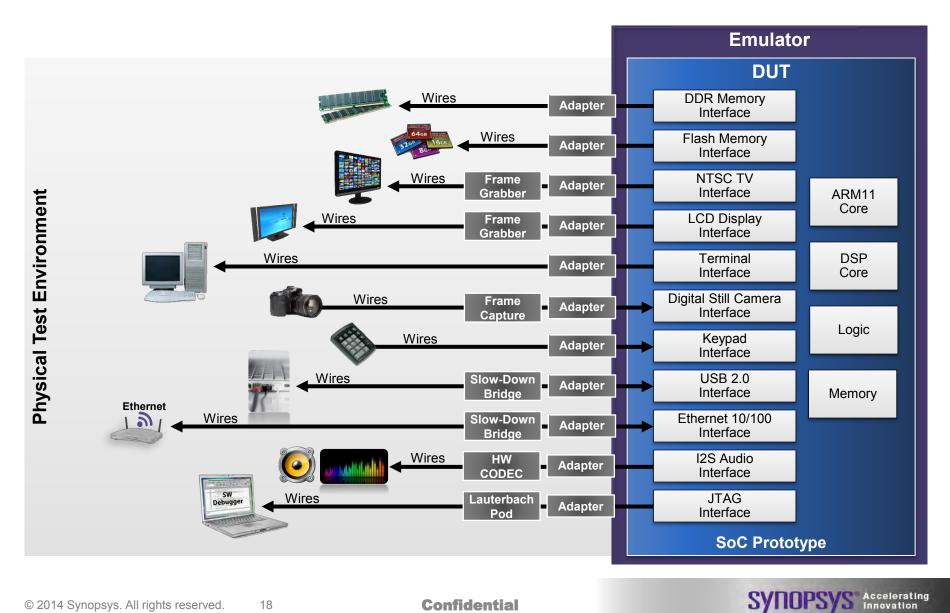
One Emulator, Many Applications

Advanced verification use modes with ZeBu Server-3

Transaction-based Verification system-level SoC verification

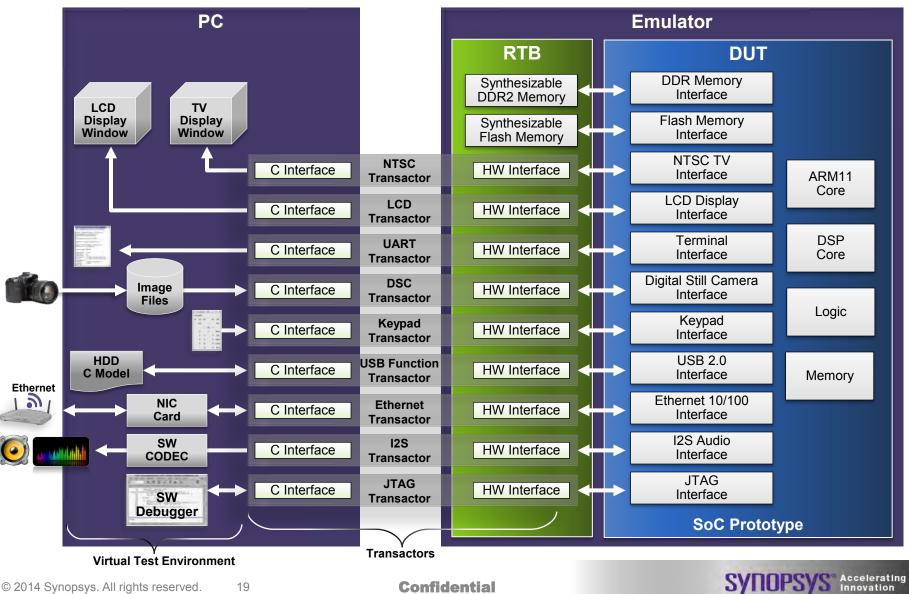
Hybrid Emulation

architecture optimization & early software development


Simulation Acceleration up to 100x simulation performance SYNOPSYS' 2010001 1 1

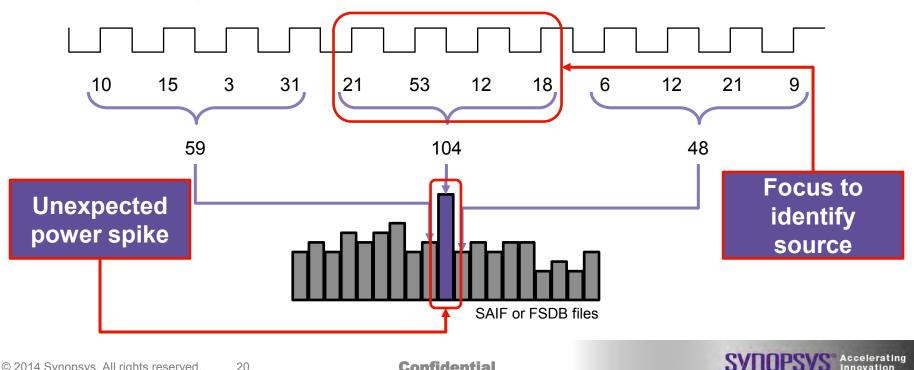
Synthesizable Testbench higher performance In-circuit Emulation real-world connections

Power-aware Emulation UPF support and SAIF output


Environment for In-Circuit Emulation

Confidential

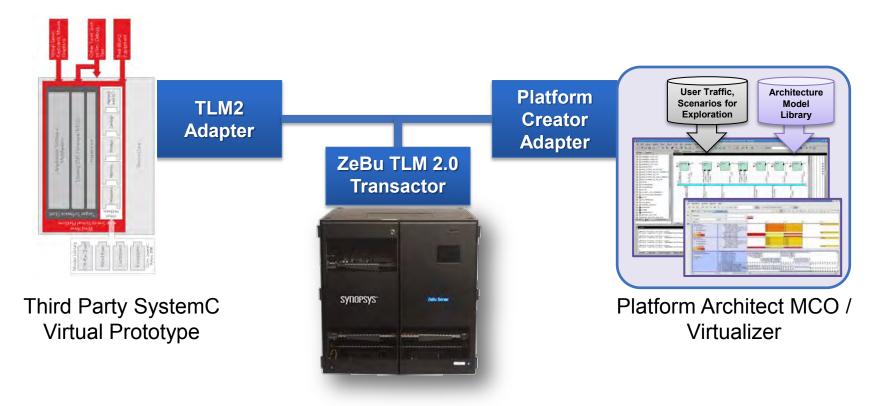
SYNOPS


Transaction-based Verification Environment

© 2014 Synopsys. All rights reserved. 19 Confidential

ZeBu Power Analysis Generates **Power Profiles**

- Ideal for block and system-level analysis with hardware and software •
- Captures every transition within each clock period •
 - User-programmable: blocks, registers, buses, entire SoC
- Includes cumulative total spanning user-defined clock numbers •
 - Large span for highest performance
 - Short span for highest accuracy
- Works seamlessly with PrimeTime •



Confidential

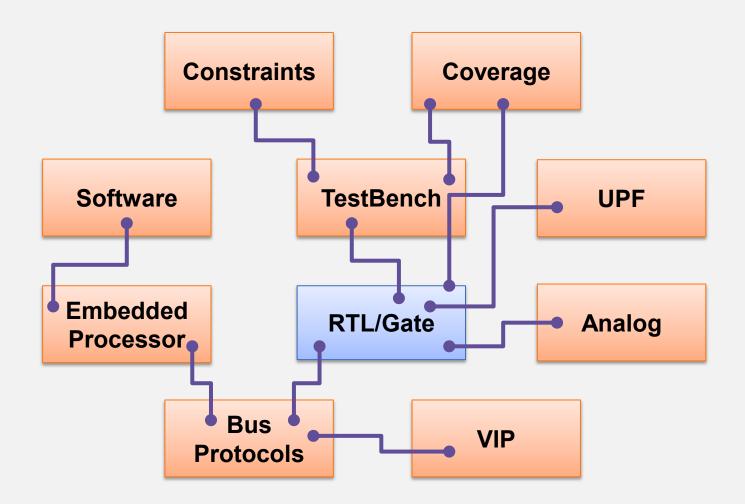
Innovation

ZeBu Hybrid Emulation

Architecture optimization and early software development

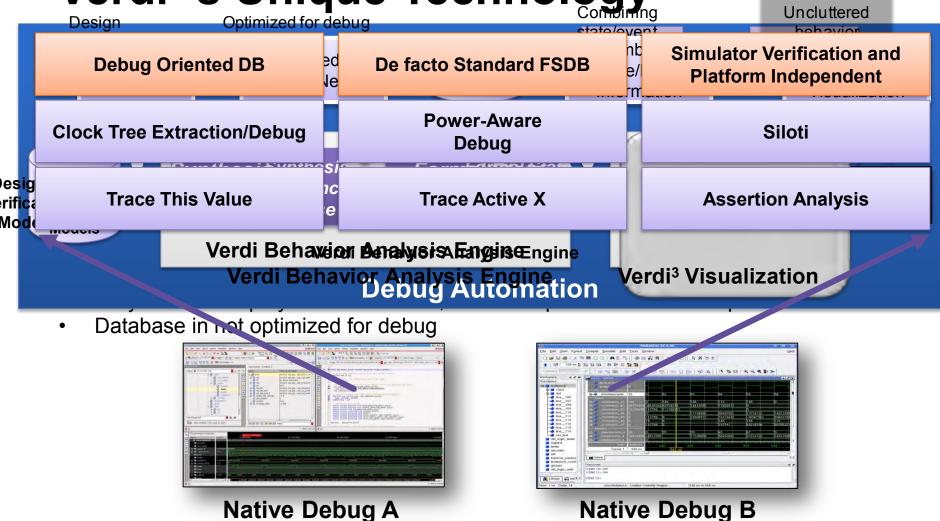

- RTL runs at high speed in ZeBu while processor model or other components run in virtual prototype
- Reduces need to have high level models for all components

S Accelerating Innovation


SYIIUF

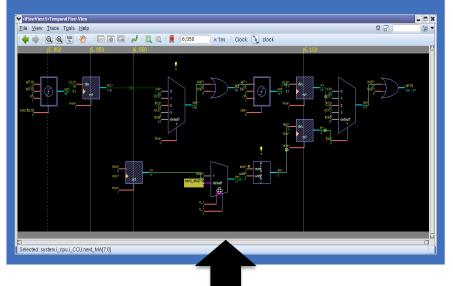
Agenda

- Market Trends
- Emulation HW Considerations
- Emulation Scenarios
- Debug



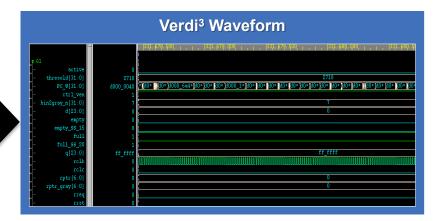
Why Is SoC Debug so Complex?

Verdi³'s Unique Technology



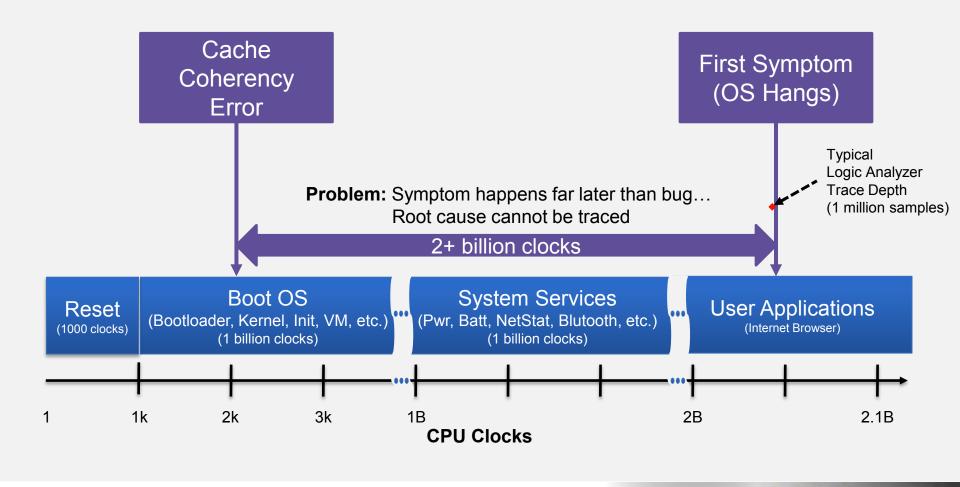
Confidential

ZeBu Simulator-Like Debug with Verdi³



- Full visibility (RTL & gate level)
 - All registers, nodes, memories
 - Run-time and post-run debug
 - No recompiles required
- Open standard support
 - FSDB, VCD, etc.
- Transaction level debug
- iCSA integration for fast time to waveform

1	Bun Control	LA Control	Memory Control		
a Dell'A	Run	Select LA	Load From File	Store To File	Edit Memory
Close Restart	Group driverClk : Clock driverClk : 1,713,030,053 Cycles Free Step 2 driverClk	Enable LA	Memory: Store first @:		
Save	Group sysbench ;		Store last @:		
Restore	Clock CLK: 809,455,466 Cycles Clock ACLX: 202,363,066 Cycles Clock ACPCLK: 202,363,066 Cycles Clock ACLX: 202,363,066 Cycles Clock CLK: 202,363,066 Cycles				131
Monitor	Gock LCLK1: 202,383,066 Cycles Clock MEMCLK: 202,383,066 Cycles Clock MEMCLK2: 404,727,733 Cycles				
	Clock UARTCLK : 202,353,865 Cycles Free Step 2 CLK				
SVA					
Zemi 3	Waveform Dump (off) File: Imonitor.vcd Cleck: None selected				



SYNOPSYS[®] Accelerating Innovation

© 2014 Synopsys. All rights reserved.

25

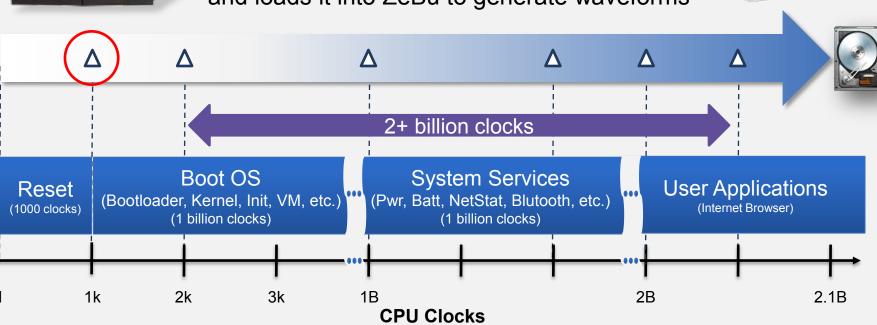
Complex Debug Scenarios

Confidential

Accelerating Innovation

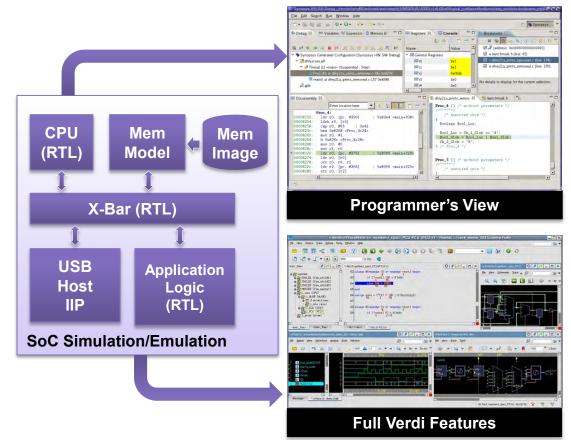
SYNUPS

ZeBu Post Run Debug


Billion-Cycle Full Visibility, Optimized for HW/SW Co-Verification

- Testbench captures DUT state periodically
- DUT inputs captured on every clock
- Data stored on Host PC disk drive
- To debug, user selects a restore point... and loads it into ZeBu to generate waveforms

Host Machine


Innovation

HW/SW Debug Overview

Embedded Processor Debug with Synchronized RTL, C, Assembly

- Enables co-debug between RTL and SW
- HW and SW debug synchronized in time
- View C/Assembly source, C variables, stack, memory
- Debugs multiple core simultaneously
- Supports all popular cores
- Easy to support additional cores or custom cores
- Custom Core support without exposing CPU internals

HW/SW Debug Use Models

Verification Environment with C-Tests

- Part of SoC verification schedule
- Hardware debug with C-tests /stimulus
- · C-tests may have minimal OS or boot code
- Requires concurrent software and hardware debug

Use HW/SW Debug for this task

Driver Development

- Software (driver) development
- Fast speed is required (>1MHz)
- Approximate hardware is acceptable

Use Virtualizer for this task

Prepare for First Silicon Bring-Up

- Debug synthetic tests mimic specific use scenarios
- Tests run on a bare-metal OS
- Develop and bug tests on a pre-silicon model
- Get ready for silicon bring up

Use HW/SW Debug for this task

First Silicon Debug

- Observed failure running test on first silicon
- Debug the failure and isolate a design bug
- Create/Validate software/firmware workaround

Use HW/SW Debug for this task

SYILLE

The End

Synopsys Confidential

