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20nm: End of the Line for Bulk

= Barring something close to a miracle,
20nm will be the last bulk node

= Conventional MOSFET limits have been
reached

= Too much leakage for too little performance
gain
= Bulk replacement candidates
= Short term:

= Planar FDSOI or FinFET/Tri-gate/Multi-
gate

= Longer term: llI-V devices, GAA, nanowires,
etc.
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A Digression on Node Names

® Process names once referred to half metal m
pitch and/or gate length Pitch

= Drawn gate length matched the node name  Intel 32nm 112.5nm

= Physical gate length shrunk faster Foundry 28nm 90nm

= Then it stopped shrinking Intel 22nm 80nm
= QObservation: There is nothing in a 20nm Foundry 20nm 64nm

process that measures 20nm Source: IEDM. EE Times

Source: ASML keynote, IEDM 12




Getting Beyond Bulk: The Contenders

= FDSOI " FinFET

= Fabs: ST, Global, IBM = Fabs: Intel, Global,

= Claim to fame: Better IBM, Samsung, TSMC
than bulk, easier than = Claim to fame: 3D is the
fins future, and the future is
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The “Dark Silicon” Problem

Node
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Note: Precise scaling details don’t matter as much as the general observation




“Silicon” Device Roadmap
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“Silicon” Device Roadmap
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Metal Stack

= FinFETs have significantly
better current drive capability
than bulk devices

= Also higher gate capacitance

= Still a big chunk of
capacitance in wiring

= RC of contacting layers also
Important
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Jan et al, IEDM 12



3-Sided Gate

Weneer = 2°Hen + Tein




Width Quantization




Width Quantization
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Width Quantization and Circuit Design

= Standard cell design involves complex device sizing analysis
to determine the ideal balance between power and
performance
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3D Factor
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Standard Cell Transistor Widths
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Standard Cell Transistor Widths

40nm 28nm 20nm 14nm




Standard Cell Transistor Widths
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FINFET Designer’s Cheat Sheet

= Fewer Vt, L options

= New variation signatures

= Some local variation will reduce
= | ocal/Global balance is designer’s opportunity
= xXOCV derates will need to reduce
= Better tracking between device types
= Reduced Inverted Temperature Dependence

= |ittle/no body effect
= FinFET 4-input NAND ~ planar 3-input NAND

= More complex cells / Higher fan-in (?)

= Paradigm shift in device strength per unit area

= Get more done locally per clock cycle
= Watch the FET/wire balance

= Expect better power gates

= Watch your PDN and EM!




FINFET bit cells: Discrete Options

fin

Note: Conceptual cell layout, not foundry specific




Assist Required for Most Cells
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FINFET and Reduced VDD

14ptm: ARM Predictive Technology Model

FOM =>» “Figure of Merit” representative circuit




Big-Little Optimized Solution with DVFS

Power (mW)

DVFS Curves, 85C, with RFTS
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The Good Old Days of DVFS

= Measured energy savings with DVS at 65LP

= RAM voltage headroom requires 1.08V...
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Summary

= FinFETs cause substantial changes in physical IP design but
their effect can mostly be hidden from higher levels

= Especially when combined with litho needs

= Other devices will be needed in the future, their effect may be
more pronounced

= Designers can best take advantage of improved performance
by working at lower voltages




