The Challenges of FinFET Design

Rob Aitken

ARM Fellow

San Jose, CA

20nm: End of the Line for Bulk

- Barring something close to a miracle,
 20nm will be the last bulk node
 - Conventional MOSFET limits have been reached
 - Too much leakage for too little performance gain
- Bulk replacement candidates
 - Short term:
 - Planar FDSOI or FinFET/Tri-gate/Multigate
 - Longer term: III-V devices, GAA, nanowires, etc.

I come to fully deplete bulk, not to praise it

M. Antonius

A Digression on Node Names

- Process names once referred to half metal pitch and/or gate length
 - Drawn gate length matched the node name
 - Physical gate length shrunk faster
 - Then it stopped shrinking
- Observation: There is nothing in a 20nm process that measures 20nm

Node	1X Metal Pitch
Intel 32nm	112.5nm
Foundry 28nm	90nm
Intel 22nm	80nm
Foundry 20nm	64nm

Source: IEDM, EE Times

14nm node ARM M1 clip, 46nm minimum pitch, exposed on an NXE:3300B with conventional illumination

Source: ASML keynote, IEDM 12

Getting Beyond Bulk: The Contenders

- FDSOI
- Fabs: ST, Global, IBM
- Claim to fame: Better than bulk, easier than fins

- FinFET
- Fabs: Intel, Global, IBM, Samsung, TSMC
- Claim to fame: 3D is the future, and the future is now

The "Dark Silicon" Problem

Note: Precise scaling details don't matter as much as the general observation

"Silicon" Device Roadmap

"Silicon" Device Roadmap

"Silicon" Device Roadmap

Sources: ITRS, IEDM, public statements, ARM speculation

Metal Stack

- FinFETs have significantly better current drive capability than bulk devices
 - Also higher gate capacitance
- Still a big chunk of capacitance in wiring
- RC of contacting layers also important

3-Sided Gate

$$W_{FINFET} = 2*H_{FIN} + T_{FIN}$$

Width Quantization

Width Quantization

Width Quantization and Circuit Design

 Standard cell design involves complex device sizing analysis to determine the ideal balance between power and performance

3D Factor =
$$\frac{\text{Total width of FinFET}}{\text{Planar width used}} = \frac{2 \times H_{\text{FIN}} + T_{\text{FIN}}}{\text{Fin Pitch}}$$

FinFET Designer's Cheat Sheet

- Fewer Vt, L options
- New variation signatures
 - Some local variation will reduce
 - Local/Global balance is designer's opportunity
 - xOCV derates will need to reduce
 - Better tracking between device types
 - Reduced Inverted Temperature Dependence
- Little/no body effect
 - FinFET 4-input NAND ~ planar 3-input NAND
 - More complex cells / Higher fan-in (?)
- Paradigm shift in device strength per unit area
 - Get more done locally per clock cycle
 - Watch the FET/wire balance
 - Expect better power gates
 - Watch your PDN and EM!

FinFET bit cells: Discrete Options

Note: Conceptual cell layout, not foundry specific

Assist Required for Most Cells

FinFET and Reduced VDD

FOM → "Figure of Merit" representative circuit

Big-Little Optimized Solution with DVFS

DVFS Curves, 85C, with RFTS

The Good Old Days of DVFS

- Measured energy savings with DVS at 65LP
 - RAM voltage headroom requires 1.08V...

Summary

- FinFETs cause substantial changes in physical IP design but their effect can mostly be hidden from higher levels
 - Especially when combined with litho needs
- Other devices will be needed in the future, their effect may be more pronounced
- Designers can best take advantage of improved performance by working at lower voltages

