GARYSMITH CONSULTING IN ELECTRONIC DESIGN ITRS 2013 Silicon Platforms + Virtual Platforms = An explosion in SoC design by Gary Smith

ELECTRONIC DESIGN STRATEGY & MARKET ANALYSIS

©2013 Gary Smith EDA, Inc.

All Rights Reserved.

www.garysmithEDA.com

The Five Design Constraints

- Frequency
- Power
- Gate Count
- Design time
- Cost of design
- Cost of the packaged SoC

©2013 Gary Smith EDA, Inc.

What Happened to **EARYEMITH** Performance ?

- The old view "Frequency = Performance".
 Frequency is still a constraint but –
- Today's view Performance = Latency plus
 Power
- Customer view of Performance = Available Applications
 - Gate count

Improving Power's

Table DESN14 Low-Power Design Technology Improvements and Impact on Dynamic and Static Power

Software Virtual Prototype	2011	123%	120%	Virtualization tools to allow the programmer to develop software prior to silicon
Frequency Islands	2013	126%	100%	Designing blocks that operate at different frequencies
Extreme Power Gating	2015	90%	100%	Shutting down applications (Dark Silicon)
Hardware/Software Co- Partitioning	2017	118%	100%	Hardware/software partitioning at the behavioral level based on power
Heterogeneous Parallel Processing (AMP)	2019	118%	100%	Using multiple types of processors in a parallel computing architecture
Many Core Software Development Tools	2021	120%	100%	Using multiple types of processors in a parallel computing architecture
Power-Aware Software	2023	121%	100%	Developing software using power consumption as a parameter
Near-Threshold Computing	2025	123%	80%	Lowering Vdd to 400 - 500 mV
Asynchronous Design	2027	121%	100%	Total Non-clock driven design

Source: ITRS 2012

Gates & Frequency

E D R

(5 watts max)

Max Usable Gates Max Usable Gates Max Usable Gates

- In 2011 we could use 39% of the available gate count.
- By 2026 we are up to 93% of the available gates, as long as we can accomplish the required improvements.
- But now we need to look at cost.

Improvements on **EARYEMITER**

Design Productivity

DT Improvement	Year	Productivity Delta	Productivity (Gates/Year/Designer)	Cost Component Affected	Description of Improvement
Software Virtual Prototype	2011	300% SW	1200K HW, 2584K SW	SW development	Virtualization tools used to allow development prior to completed silicon
Intelligent Testbench	2012	37.5% HW	1650K HW, 2584K SW	System design and verification	Like RTL verification tool suite, but also with automation of the verification partitioning step
Reusable Platform Blocks	2013	200% HW, 100% SW	4949K HW, 5168K SW	Chip/circuit/PD verification	Fully functional platforms used as a block in larger platform design (e.g., ARM in OMAP)
Silicon Virtual Prototype	2015	100% HW	9897K HW, 5168K SW	System design and verification	A hardware virtualization platform that enables an RTL handoff of a SOC
Heterogeneous (AMP) Parallel Processing	2017	100% HW, 100% SW	19794K HW, 10336K SW	SW development verification	Many specialized cores provide processing around a main processor, which allows for performance, power efficiency, and high reuse
Transactional Memory	2018	60% SW		SW Development	Automaticaly handles locks and unlocks.
Many-Core SW Development Tools	2019	60% SW	19794K HW, 16537K SW	SW development	Enables compilation and SW development in highly parallel processing SOCs
Parallel SW Language	2021	200% SW		SW development	Laguages specifically designed for parallel programing.
Suoer Computer Class Servers	2023	100% HW 75% SW		HW & SW Design and Development	Parallel computing specialised for the application and computer language.
System-Level Design Automation (SDA)	2025	60% HW, 37.5% SW	31671K HW, 45476K SW	System design and verification	Automates true system design on- and off-chip for the first time, including electronic, mechanical and other heterogeneous technologies
Executable Specification Source: ITRS 2012	2027	200% HW, 200% SW	95013K HW, 136429K SW	System design and verification	Describes the system specification in a manner that allows automated design 7

©2013 Gary Smith EDA, Inc.

Max Usable Gates at 5 Watts - Cost

©2013 Gary Smith EDA, Inc.

Cost of a 5 watt Mobile SoC Design

- Only four times in 17 years will we be able to meet our \$50,000,000 goal for a large semiconductor company design.
- We aren't even close to meeting the \$25,000,000 goal for a VC funded Start-Up design.
- So if we can't use the maximum allowable gate count, for our Power Budget, what can we do ?

©2013 Gary Smith EDA, Inc.

©2013 Gary Smith EDA, Inc.

Max Usable Gates Maxusable Ga

©2013 Gary Smith EDA, Inc.

Gate Count of a 5 watt Marter Mobile, \$50m SoC Design

- Not bad, in 2013 it's about the same gate count and by 2027 we can do 5,000,000,000 gates, vs. almost 13,000,000,000 usable gates.
- Now let's look at what a Start-Up can do.

Source: ITRS/Gary Smith EDA 2012

©2013 Gary Smith EDA, Inc.

Max Usable Gates Maxusable Gates Maxusable Gates Maxusable Gates at 5 Watts - @ \$25m Cost

Source: ITRS/Gary Smith EDA 2012

©2013 Gary Smith EDA, Inc.

Gate Count of a 5 watt ^{■▲■Y■■■™■}¶ Mobile, \$25m SoC Design

- Again not bad. They can come within both their Power Budget and their Cost Budget and design up to 3,000,000,000 gates.
- Now what does that mean to the marketing team.

Gate Count by Cost

Millions of gates

The Competitive Edge

- So the more Apps you have on your phone the better chance you'll have a competitive edge.
- Still they have to be the right Apps.
- And let's face it 3 billion gates is a LOT of gates.
- And how you use those gates is often more important that how many you use.

Bottom Line

- There are predictions being passed around that designs will cost \$150 m.
- That's just wrong. You don't know the cost until you pick a gate count.
- Truth is that is that if a Start-Up picks their product carefully, and does a "smart" design, they can compete.

©2013 Gary Smith EDA, Inc.

The Silicon Virtual Prototypes

- SVP 1, the design starts, hardware accelerators added, Transactional Modeling developed. In-House Platforms designed.
- SVP 2, existing RTL blocks inserted, System C blocks synthesized, design completed, design verified, Golden Netlist is the output.
- Could be the same team.

The ESL Flow 2011

The ESL Flow 2012

The Software Virtual Prototypes

 SWVP 1, the Architect's Workbench, used by the Architectural Team for design formation and exploration, usually modeled in C/C++ or M (Mathwork's Language).

Microprocessors selected, Foundation Platform selected, some Applications Platforms selected.

The Software Virtual Prototypes

- **SWVP 2**, Applications code written. Applications code is run on the SVP checking for latency and power.
- **SWVP 3**, Firmware & Middleware written. Applications code is run on the SVP checking for final latency and power.
- **SWVP 4**, Used by product marketing and sales to check out the design with prospective customers for possible modifications. 24

©2013 Gary Smith EDA, Inc.

The Software Virtual Prototypes

- The four different SWVPs serve four different functions, therefore there are:
 - four different users,
 - four different specifications,
 - and four different price points!

The ESL Flow 2013 Numbers

