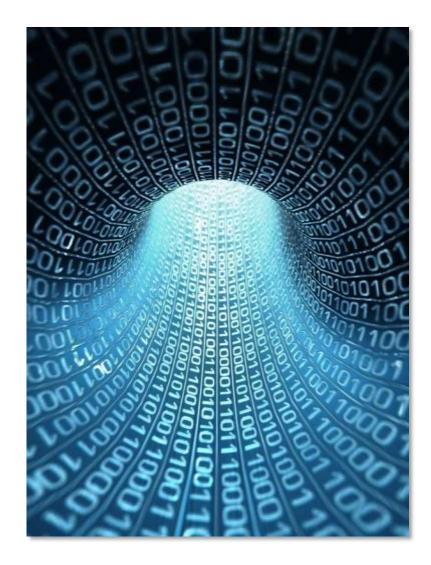
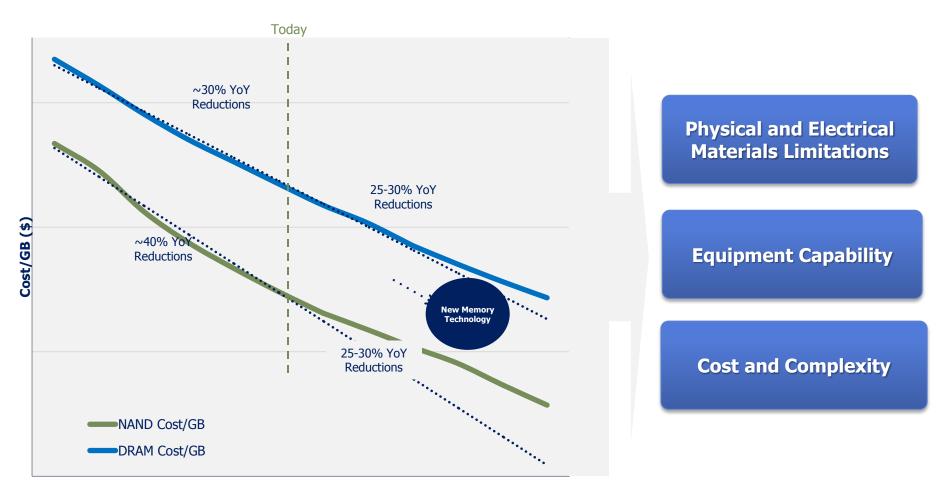


Hybrid Memory Cube Mike Black



©2013 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings are not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.


18 April, 2013

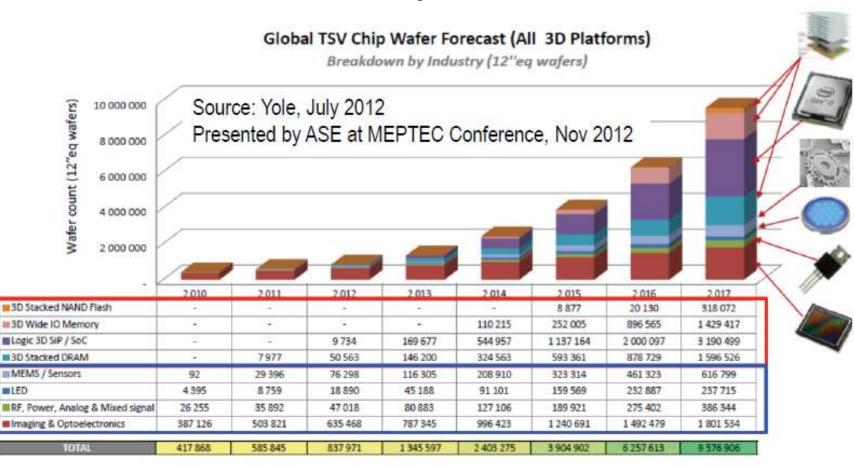
The Situation

- Continued global demand for mobility
- Device proliferation
- Impact of the Cloud
- Big data analytics challenge

The Roadmap

Memory Cost Scaling Over Time

Global Revenue Forecast 3D TSV Devices

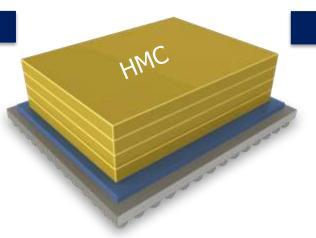


Comparison with total semiconductors market value (B\$)

*: Excluding Interposer Revenues !

Global Forecast TSV Chip Wafers

Micron


The Innovation: **HMC**

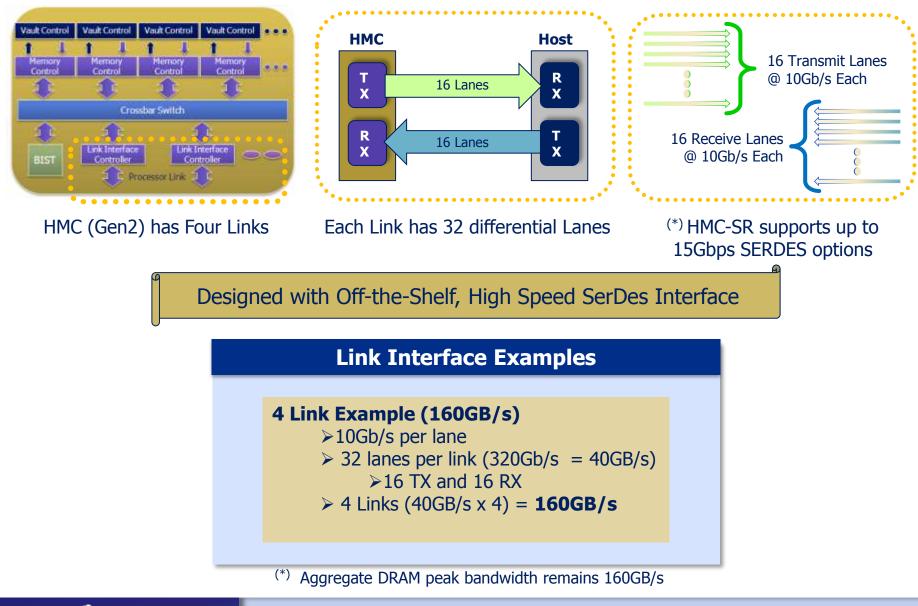
Revolutionary Approach to Break Through the "Memory Wall"

- Evolutionary DRAM roadmaps hit limitations of bandwidth and power efficiency
- Micron introduces a new class of memory: Hybrid Memory Cube
- Unique combination of DRAMs on Logic

Key Features

- Micron-designed logic controller
- High speed link to CPU
- Massively parallel "Through Silicon Via" connection to DRAM

Unparalleled performance


- Up to 15X the bandwidth of a DDR3 module
- 70% less energy usage per bit than existing technologies
- Occupying nearly 90% less space than today's RDIMMs

Full silicon prototypes in silicon **TODAY**

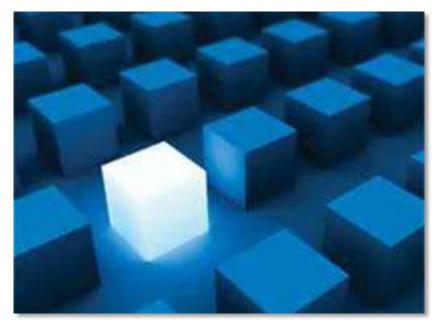
Targeting high performance computing and networking, eventually migrating into computing and consumer

Link Controller Interface

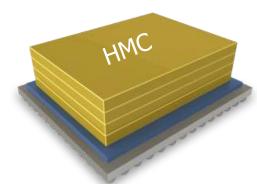
HMC Near Memory

- All links between host CPU and HMC logic layer Processor Maximum bandwidth per GB capacity HPC/Server – CPU/GPU • Graphics •
 - Networking systems
 - Test equipment

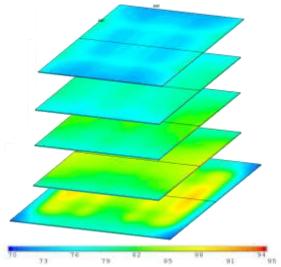
HMC "Far" Memory

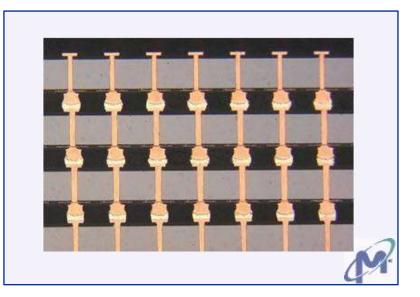

• Far memory:

- Some HMC links connect to host, some to other cubes
- Scalable to meet system requirements
- Can be in module form or soldereddown
- Future interfaces may include:
 - Higher speed electrical (SERDES)
 - Optical
 - Whatever the most appropriate interface for the job!



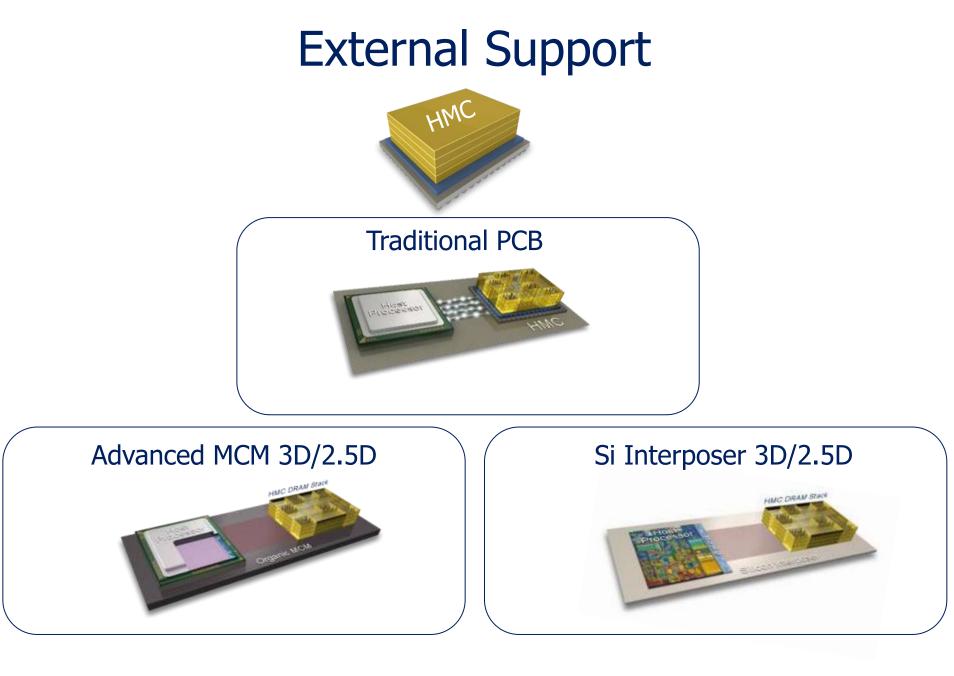
The Requirements


- Major industry transitions demand innovative business models:
 - Joint R &D efforts
 - Agreed-upon design standards
 - Cross-industry coordination
 - Customer education and hands-on training



Internal Support

- Micron design and verification tools
- Memory and logic design
- Interconnect modeling
- Thermal modeling



HMC Design Environment Examples

Design of Memory Cells and Array Matrix

Design Ste	р	Challenges	EDA Solution			
Core Cells Optimization		Area, Speed, Power	HSPICE, FineSim, Verilog	\checkmark		
Drivers and Sense Amps		Speed, Noise	HSPICE, FineSim, Verilog	\checkmark		
Design of Logic Die						
Design Ste	р	Challenges	EDA Solution	Status		
Core Logic C	Optimization	Area, Speed, Power	Cadence RC, EDI, EPS, ETS	\checkmark		
I/O Drivers and Package		Speed, Noise, EM,	Cadence ADE, Spectre,	\checkmark		
Integration in	to a Printed Circ	VPS				
Design Ste	р	Challenges	EDA Solution	Status		
DC & AC Mo	dels for I/Os	Accuracy vs runtime	Nimbic-Apex, Ansoft- Q3D, TPA, HFSS	✓		
Power & Ter	np. Analysis	For Die, Pkg, Board	Icepack, FloTHERM	\checkmark		
System-level Integration						
Design Ste	р	Challenges	EDA Solution	Status		
HMC Function	onal Model(s)	Comply with Standard	To be determined	By Q2		
HMC Timing Model(s)		Language a, b, c	To be determined	By Q2		
April , 2013		, 2013	©2013 Micron	Technology, Inc.		

Micron

18 April, 2013

Broad Industry Adoption

HMCC Mission

Promote widespread adoption and acceptance of an industry standard serial interface and protocol for Hybrid Memory Cube

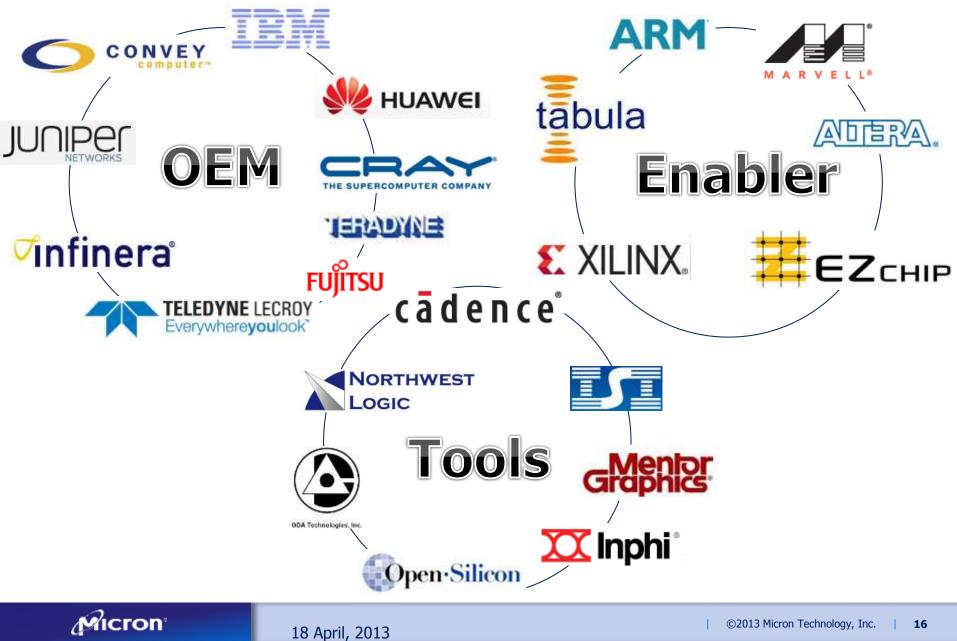
http://www.hybridmemorycube.org/

HMC Consortium Update

- HMCC specification final and available!
- Visit <u>hybridmemorycube.org</u> for more information.

- Developers working on next speed grade for SR and USR PHY:
 - SR speed bump to 28Gb/s
 - USR speed bump to 15Gb/s

Over 100 Adopters to date!					
Accel, Ltd	Fujitsu Limited	Luxtera Inc.	Pico Computing		
ADATA Technology Co., LTD	Galaxy Computer System Co., Ltd.	Marvell	Renesas Electronics Corporation		
AIRBUS	GDA Technologies	Mattozetta Technologies	Science & Technology Innovations		
Altior	GLOBALFOUNDRIES	Maxeler Technologies Ltd.	SEAKR Engineering		
APIC Corporation	GraphStream Incorporated	MediaTek	ST Microelectronics		
Arira Design	HGST, a Western Digital Company	Memoir Systems Inc.	Suitcase TV Ltd		
Arnold&Richter Cine Technik	HiSilicon Technologies Co., Ltd	Mentor Graphics	Tabula		
Atria Logic, Inc.	HOY Technologies	Miranda	Tech-Trek		
BroadPak	Huawei Technologies	Mobiveil, Inc.	Teradyne, Inc		
Cadence Design Systems, Inc.	Infinera Corporation	Montage Technology, Inc.	The Regents of the University of California		
Convey Computer Corporation	Information Sciences Institute USC	Napatech A/S	Tilera Corporation		
Cray Inc.	Inphi	National Instruments	Tongji University		
DAVE Srl	ISI/Nallatech	NEC corpration	T-Platforms		
Design Magnitude Inc.	Israel Institute of Technology	Netronome	TU Kaiserslautern		
Dream Chip Technologies GmbH	Juniper Networks	New Global Technology	UC, Irvine		
Engineering Physics Center of MSU	Kool Chip	Northwest Logic	UMC		
eSilicon Corporation	Korea Advanced Institute of Science	Obsidian Research	University of Heidelberg ZITI		
Exablade Corporation	Lawrence Livermore National Laboratory	OmniPhy	University of Rochester		
Ezchip Semiconductor	LeCroy Corporation	Oregon Synthesis	Winbond Electronics Corporation		
FormFactor Inc.	LogicLink Design, Inc.	Perfcraft	Woodward McCoach, Inc.		
			ZTE Corporation		


100 Adaptars to data

Micron

18 April, 2013

©2013 Micron Technology, Inc. | 15

Ecosystem

The Future

- Memory ecosystem changing
- High performance signaling and routing opening doors for EDA growth
- ► HMC is coming THIS YEAR
- Tool and IP support needed now

