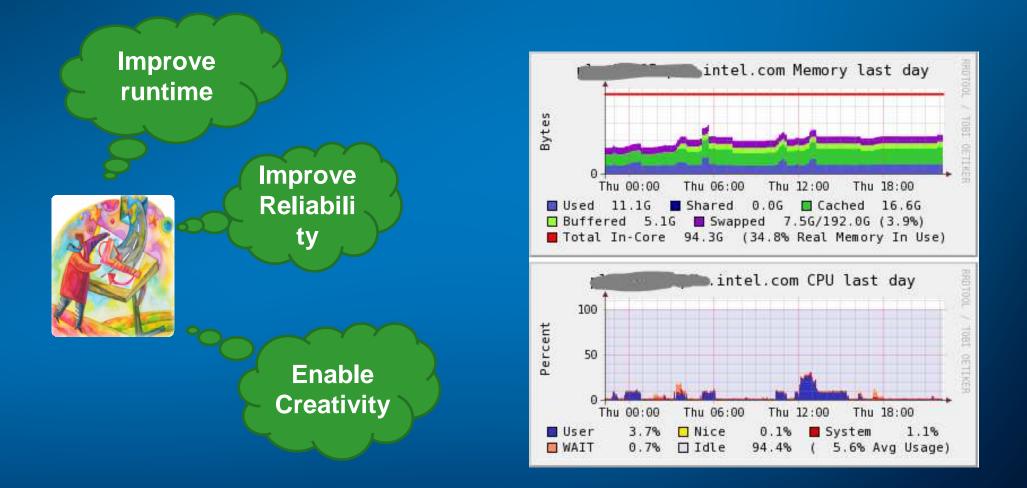
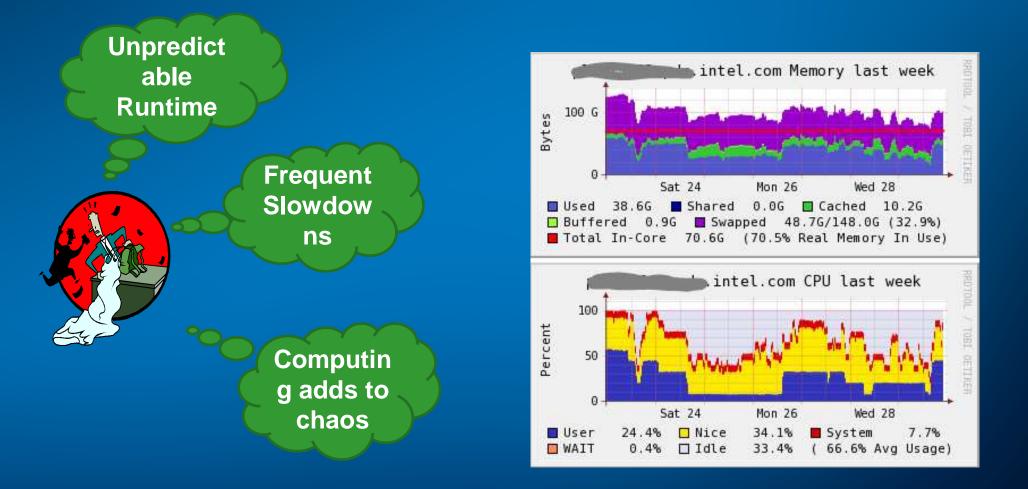


Improving User Productivity in a Cloud Environment

April 5, 2012 Kiron Pai Design Automation Lead Converged Core Development Organization, Intel Corp.


Cloud Computing

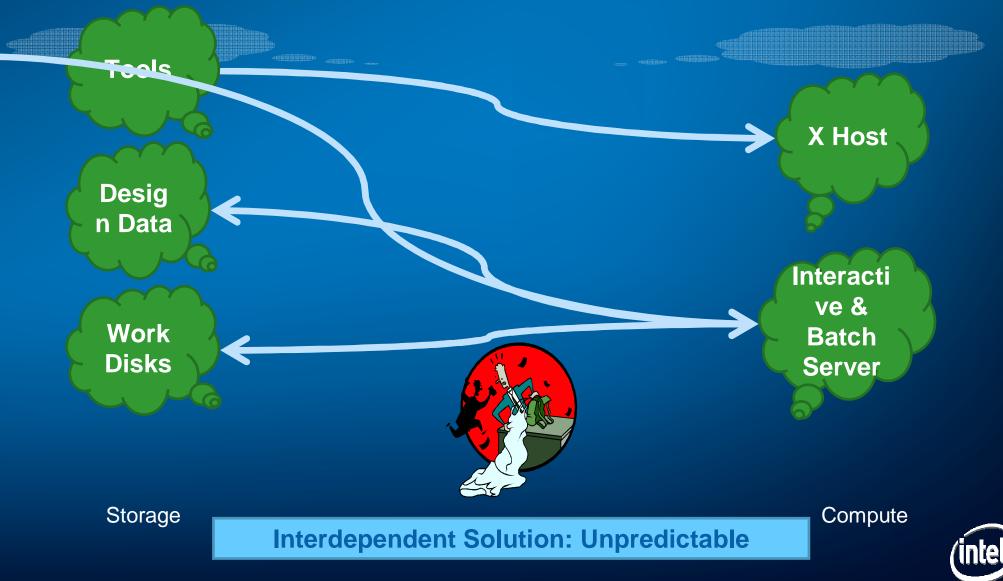
Computing optimized for Bulk Processing


Interactive Computing (ideal)

Computing optimized for User Experience

Interactive Computing (reality)

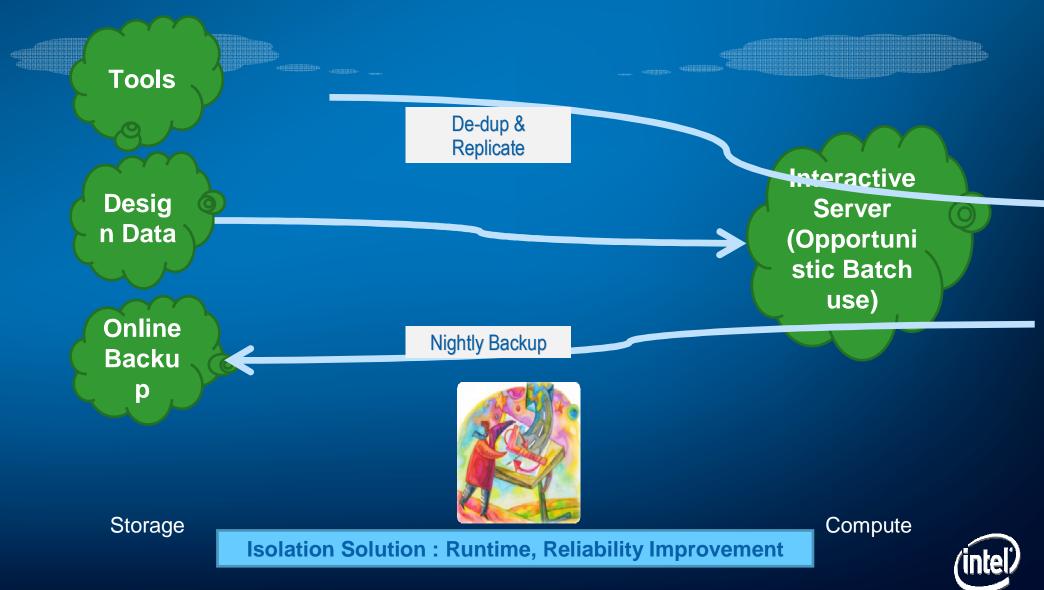
Compromised Experience



Goals

- Improve user productivity by engineering an interactive compute environment
 - Improve run time
 - Improve reliability
 - Neutral on total cost of ownership (TCO)

Interactive Computing Solution of Today



Solution

- Improve Runtime
 - Allocate one high end machine per user
 - Use local disk for work disk and tools
- Improve Reliability
 - Reduce multiple points of failure
 - Shared VNC servers
 - Multiple users/batch jobs per compute servers
 - Multiple fileserver
- Reduce total cost of ownership
 - Unused cycles used by batch
 - Low Cost fileservers for work disk backup

Interactive Computing Solution of Future

Results/Progress Summary

Solution	Goals			
	Runtime & Reliability Improvement	ТСО		
One user per m/c	+ Reduced thrash due to multiple users + Headroom on m/c for changing usage model	- Increases cost of compute per user		
Local disk work area	+ Runtime improvement ~ 20% + Reduces dependency on Tier 2 work disk storage			
VNC on local machine	+ Reduced hops for VNC + Reduced interruptions due to shared machine slowdowns			
Opportunistic batch for unused cycles		- Mixed results, works only for low profile use		
Low cost storage for online backup		+ Reduced cost of work disk for users		
Mirror tools to local disk	 de-dup on tools disks shrank size to 600G only (orig. est. was <300G) + Caching method designed, reduces space need ~100G High risk – complex solution, changes core pieces of design environment 			

Results/Progress - Runtime

Fab: allow (CHP Charles and the All runs were on dedicated system										
		Data: NFS	NHM 2.93GHz, 48GB (C) NH Data: NFS		Data: NFS D		NHM 2.93GHz, 48GB (C) N Data: SAS, ordered		IM 2.93GHz, 48GB (D))ata: SAS, writeback rkarea: SAS, writeback	
Stage2 - Synthesis (DC	:)	4:19:29		4:01:08		3:59:27			4:00:39	
Stage3 - ICC Place		3:11:56		2:40:01			2:32:25		2:33:00	
Stage4 - ICC clock		5:05:51		4:09:49		3:53:06			3:49:17	
Stage5 - ICC Route		3:26:05		2:48:37			2:44:18		2:43:01	
Stage6 - Sizing		11:40:55		11:31:21			11:11:34		10:54:53	
Stage6 - Optimization		11:54:05		11:22:49			11:23:37		10:47:32	
Stage6 - DFM/Backend		3:18:47		2:38:11			2:22:10		2:23:06	
Stage7 - Verification		23:43:49		22:1	7:28		22:00:55		21:22:11	
Total Runtime		66:40:57	61:29:24			60:07:32	58:33:39			
Scalability		BASE		1.08		1.11	\sim	1.14		
				BASE			1.02		1.05	
			(اسمی	All runs were o	n dedicated sys	tem				
	NHI	M 2.93GHz, 48GB (C) Data: NFS Workarea: NFS	Da	3GHz, 48GB (B) ata: NFS a: SAS, ordered	WSM 3.06GHz, Data: SAS, o Workarea: SAS	rdered	WSM 3.06GHz, 96GB Data: SAS, writeba Workarea: SAS, write	dk í	WSM 3.06GHz, 96GB (D) Data: SSD, CFQ/writeback Workarea: SSD, CFQ/WB	
Stage2 - Synthesis (DC)		1:08:25	1	1:08:14	1:01:5	2	1:00:33		1:00:39	
Stage3 - ICC Place		1:33:42	1	1:15:18 1:07:55		5	1:06:50		1:07:45	
Stage4 - ICC dock		1:38:38	1:17:46		1:09:25		1:06:37		1:08:14	
Stage5 - ICC Route		1:43:52	1:24:49		1:20:35		1:18:37		1:19:26	
Stage6 - Sizing		5:09:49	4:24:28		4:10:29		4:09:50		4:07:04	
Stage6 - Optimization		4:01:14	3:43:51		3:29:26		3:27:58		3:27:13	
Stage6 - DFM/Backend		2:14:55	1:45:10		1:33:49		1:35:28		1:31:16	
Stage7 - Verification		8:34:38	7:47:33		7:44:13		7:39:57		7:32:32	
Total Runtime		26:05:13	2	2:47:09	21:37:4	4	21:25:50		21:14:09	
Scalability		BASE		1.14	1.21		1.22		1.23	

SOURCE: Ty Tang, Ananth Sankaranarayanan, Kripa Sankaranarayanan (Intel Corp)

1.05

Clear runtime benefits of 1 user/mc & use of local disk

1.07

1.06

BASE

Results/Progress - Reliability

- Detailed tracking of CPU, memory, localdisk i/o, network
 - Separate out user and batch
- Track events when thresholds crossed
 - Frequency and duration
- User perception

Measurable improvement

Results/Progress - TCO

))			
		Cost per user per year		
	Compute	\$ 250		
Current (shared) model – 6 users per machine (12C/96G)	Avg. space per user of 250G Tier2	\$ 375		
	Avg. batch utilization of 10%	- \$ 25		
	Total	\$ 600		
	Compute	\$1500		
Proposed Solution – 1 user per	Avg. space per user of 250GB Tier4	\$ 180		
machine (12C/96G)	Avg. batch utilization of 60%	- \$ 900		
	T2 Tools fileserver (Tools caching)	- \$ 75		
	Total	\$ 705		

TCO goal is not met, opportunistic batch is key to reducing cost

Next Steps

• Improve monitoring methods

• Improve batch job policy

Improve tools caching

Why de-dup?

- Frequently released data has large number of duplicated content
- De-duplication resolves duplicates to unique file using hard links
- Improves
 - Reduces space usage (less frequent cleanup)
 - Improved sync (faster/reliable)
 - Reduced support

de-dup - Some Stats

ΤοοΙ	Size before dedup (GB)	Size after dedup (GB)
rls	19	0.5
fm	15	0.11
process	11	1.25
extraction	9	0.21
explorer	8	1.3
clktools	6	1.11
netlister	5	1.64
	85	6.12

Why replicate tools to local disk?

- Significant runtime benefit
- Reduced reliance on network and tools fileservers
- peer 2 peer replication for reduced reliance on central fileservers

References

Data DeDuplication:

http://en.wikipedia.org/wiki/Data_deduplication

PigeonHole Principle:

http://en.wikipedia.org/wiki/Pigeonhole_principle

Achieving Scalability and Availability with Peer-to-Peer Transactional Replication:

http://msdn.microsoft.com/en-us/library/cc966404.aspx

Intel Gonfidential